#### Nitrogen Dynamics and Metabolism

Work Order #3 Cohen Lab March 10, 2017

Jenny Adler

### Outline

- Task 2A: River Metabolism and Nutrient Uptake (Silver)
- Task 2B: Nutrient
  Enrichment and Depletion
  Assays (Alexander Springs)
- Task 2C: *In Situ* SAV Growth (Alexander Springs)



Task 2A

#### **METABOLISM** (SILVER RIVER)

#### Long Term Continuous Metabolism

- Oxygen mass balance at the reach scale
  - Mammoth to SilverRiver-S5 (Dec, 2014 to present)
  - SilverRiver-S5 to SilverRiver-S1 (Nov 2015 to present)



Primary production yields O<sub>2</sub>, respiration uses O<sub>2</sub>

#### Example Period – Dec. 2014

• Upper River GPP ~ 0.5\*ER (net heterotrophic)





#### **Upper River**

- GPP ~ 7.4 g  $O_2 m^{-2} d^{-1}$ - 1000 g C m<sup>-2</sup> yr<sup>-1</sup>
- ER ~ 9.7 g  $O_2 m^{-2} d^{-1}$
- P:R ~ 0.78
- GPP is predicatable
  - OpenLight (+) p < 0.0001</p>
  - fDOM (-) p < 0.0001
  - R<sup>2</sup> = 0.7

#### Lower River

- GPP ~ 11.6 g  $O_2 m^{-2} d^{-1}$ 
  - 1500 g C m<sup>-2</sup> yr<sup>-1</sup>
- ER ~ 14.3 g  $O_2 m^{-2} d^{-1}$
- P:R ~ 0.81



# Coupled [NO<sub>3</sub>] and [SRP] Variation

- NO<sub>3</sub> uptake during the day
- PO<sub>4</sub> uptake during the evening



#### Light Model

#### MODIS LAI (250 m pixels, 4 day interval) adjusts open-sky irradiance



Task 2B

#### **NUTRIENT ENRICHMENT ASSAY** (ALEXANDER SPRINGS CREEK)

#### **Our Motivating Questions**

(Task 2B)

- How does nutrient (N, P, Fe) enrichment affect system metabolism?
  - [overall growth response]
- How does nutrient enrichment (N, P, Fe) affect algal accumulation?

– [algal growth response]

- How does nutrient depletion (N) affect growth and uptake?
  - [plant uptake kinetics]

#### How does nutrient (N, P, Fe) enrichment impact ecosystem metabolism?

[benthic boxes, act I]

#### Nutrient Enrichment/Depletion Assays Benthic Boxes (Alexander)



| BOX BOX 1 BOX 2 BOX 3 |
|-----------------------|
|-----------------------|

| <b>Conservative Tracer and Nutrient Additions</b> | <u>Treatments</u> |
|---------------------------------------------------|-------------------|
| Ambient concentrations raised by:                 | $\mathbf{N}$      |
|                                                   | Р                 |
| 20 mg/L for Cl (in all boxes)                     | Fe                |
| 20  mg/L for N                                    | N + P             |
| 2  mg/L for P                                     | N + Fe            |
| 0.05  mg/L for  Fo                                | P + Fe            |
| 0.05 mg/L for Fe                                  | N + P + Fe        |



#### Integrative Models of GPP and ER

- Effective for GPP (pseudo R<sup>2</sup> ~ 0.83) and ER (pseudo R<sup>2</sup> ~ 0.62)
- Informs interpretation of enrichment dosing

|                  |        |      | t-    | p-    |                  |        |      | t-    | p-    |
|------------------|--------|------|-------|-------|------------------|--------|------|-------|-------|
| A: GPP           | Est.   | SE   | value | value | B: ER            | Est.   | SE   | value | value |
| Intercept (Fall) | -7.83  | 2.37 | -3.30 | 0.004 | Intercept        | 3.34   | 2.30 | 1.45  | 0.164 |
| Light            | 0.01   | 0.00 | 4.38  | 0.000 | MeanGPP          | 0.40   | 0.17 | 2.38  | 0.029 |
| Depth            | 10.83  | 3.09 | 3.51  | 0.003 | Light            | 0.00   | 0.00 | -1.13 | 0.273 |
| AFDM             | 0.04   | 0.02 | 2.19  | 0.044 | Depth            | 4.15   | 3.18 | 1.31  | 0.208 |
| Spring           | 3.08   | 0.90 | 3.43  | 0.003 | AFDM             | 0.03   | 0.02 | 1.75  | 0.098 |
| Summer           | -0.66  | 1.28 | -0.52 | 0.611 |                  |        |      |       |       |
| Winter           | 1.69   | 1.06 | 1.59  | 0.132 |                  |        |      |       |       |
|                  |        |      |       |       |                  |        |      |       |       |
| Null Deviance    | 245.40 |      |       |       | Null<br>Deviance | 126.60 |      |       |       |
| Resid.           | 245.40 |      |       |       | Resid.           | 120.00 |      |       |       |
| Deviance         | 45.60  |      |       |       | Deviance         | 48.20  |      |       |       |

#### Nutrient Enrichment Effects (Alexander)

Significant temporal and spatial variation implies testing treatments using **relative response** (RR):

- Ratio of GPP in treatment vs. control  $RR_{GPP} = log (GPP_t:GPP_c)$ 

 Ratio of relative growth (GPP/B) in treatment vs. control

 $RR_{GPP:B} = \log (GPP_t/B_t : GPP_c/B_c)$ 

#### **GPP Response**

0.50 No significant treatment effects Log RR 000 As treatments As nutrient main effects only -0.50 Ν Ρ Fe 0.50 Nutrient Log RR 0.00 -0.50 Ρ Ν Fe N+P N+Fe P+Fe N+P+Fe

Treatment

### **Relative Growth**

- Weak N effect -p = 0.05
- No main effects
  - N effect disappears





#### Summary of GPP Response (Alexander)

- GPP is (expected to be) highly predictable
  Light, Biomass, Depth Season target variables
- Nutrient enrichment had <u>mostly no effect</u>
  - No effects for GPP directly
  - Weak N effect for relative growth which disappears with other additions

# How does nutrient enrichment (N, P, Fe) affect algal accumulation?

[benthic boxes, act II]

# **Algal Tiles**

- Unglazed ceramic tiles (A = 144 cm<sup>2</sup>)
- Hung in each box for week-long deployment
- Biomass accrual (dry weight)



#### Raw Algal Biomass Data



No clear enrichment effect without controlling for site variation (i.e., treatment relative to control)

Slightly higher algal accrual <u>overall</u> in Alexander (0.32 g m<sup>-2</sup> d<sup>-1</sup>) vs. Silver (0.25 g m<sup>-2</sup> d<sup>-1</sup>). *NB: Different seasons and light regimes.* 

Preliminary model of algal growth suggests weak season effect, strong water depth effect, and weak SAV biomass effect (light effect not yet completed)

#### **Nutrient Enrichment Effects**

Significant temporal and spatial variation implies testing treatments using **relative response** (RR):

– Ratio of Algal Biomass in treatment vs. control **RR**<sub>Algae</sub> = log (Algae<sub>t</sub>:Algae<sub>c</sub>)

# **Treatment Effects - RR**<sub>Algae</sub>

• No statistically significant effects



#### Pairwise Enrichment

• No significant effects



# **Summary of Algal Response**

- Algal growth is somewhat predictable
  Depth, season, SAV biomass, light (?)
- No significant treatment effects

Task 2C

#### **SUBMERGED VEGETATION GROWTH** (ALEXANDER SPRINGS CREEK)

#### SAV Growth Rates



Silver

Alexander





#### Redox Potential Controls SAV Growth Alexander Springs Creek



# Summary - Task 2 Activities

- Ecosystem Metabolism
  - Higher in the lower river, responds to "dark days" on Silver River
  - P:R consistently < 1 (and this only counts aerobic respiration)</li>
  - Effective benthic light model
- Nutrient Effects on Metabolism in Alexander (low N)
  - Metabolism varies substantially, and predictably
  - Nutrient enrichment had mostly no effect
    - Evidence of weak N stimulation
    - Disappears with other nutrient additions
- Nutrient Impacts on Algal Growth
  - Low rates of biomass accrual (0.31 g C m<sup>-2</sup> d<sup>-1</sup>) slightly higher than Silver
  - No significant treatment effects
- SAV Growth
  - Mean growth is the same in Silver and Alexander (no S. kurziana)
  - Models are effective at predicting SAV growth (R<sup>2</sup> ~ 0.6) but only redox potential (Alexander only, so far) is a compelling pairwise predictor

#### The Final Push

#### Task 2A

- Finalize rates for metabolism and nutrient retention, with April 1 data end date
- Relate to climatic and canopy variables

#### Task 2B

- Synthesize metabolism predictions across Silver and Alexander control boxes
- Synthesize nutrient enrichment effects across Silver and Alexander
- Nutrient uptake dynamics

#### Task 2C

- Complete site redox measurements in Silver
- Complete analysis of controls on SAV growth