Benthic Sources and Sinks of Nutrients and Trace Elements – An Update

Modified from M Cohen

Karst River Corridor Science

- **Overland flow**
 - Negligible in karst settings
 - Maybe in Silver River drainage?
- Large contribution from groundwater
 - What are sources?
 - What are ecosystem impacts?

Overall Goal

Assess and estimate benthic fluxes (diffusion and advection) of nutrients (C,N,P, S, Fe, Mn) from bottom sediments to/from river

Tasks:

- 1. Measure sediment thickness ✓
- 2. Measure physicochemical properties of sediment
 - A. C, N, P metal concentrations ✓
 - B. Porosity, permeability ✓
- 3. Measure chemical compositions of pore waters ✓
- Measure head gradients between pore water and river ✓

Overall Goal

Assess and estimate benthic fluxes (diffusion and advection) of nutrients (C,N,P, S, Fe, Mn) from bottom sediments to/from river

Tasks:

- Estimate sediment ages/accumulation rates ongoing (almost ✓; sample analyses ongoing)
- 6. Estimate diffusive fluxes ✓ refining
- 7. Estimate advective fluxes ✓ refining
- 8. Compare with other fluxes \checkmark refining

Sample sites

 15 transects measured for sediment thickness

Sample sites

Upstream **Downstream** from river mile 5 4 pwater elevation station from MFL Google earth

- 15 transects measured for sediment thickness
- Four primary transects
 - Deep and shallow pore water compositions
 - Hydraulic conductivity
 - Coring stratigraphy
 - Long term head gradients
 - Sedimentation rates

Sample sites

Upstream Downstream from river mile 5 4 water elevation station Google earth

- 15 transects measured for sediment thickness
- Four primary transects
 - Deep and shallow pore water compositions
 - Hydraulic conductivity
 - Coring stratigraphy
 - Long term head gradients
 - Sedimentation rates

- Three additional pore water sample sites
 - Shallow pore waters only
 - Cohen lab sites

Sediment Stratigraphy

Sedimentation Rates - Status

Fairly consistent sedimentation rates except RM0.7

- RM0.7 suggests rapid sedimentation
- Rapid sedimentation (young sediment) suggest river also eroding

- Recollected three cores Analyze by α counting
 - Higher resolution (1/cm)
- Collection from 0 to 60 cm at RM0.7

Pore Water Sampling

• Whole core squeezers:

- Shallow high resolution pore water
- Estimate diffusive fluxes
- Similar core barrel for ²¹⁰Pb collection

• Vapor probe:

- Deep low resolution sampling
- Provide "end-member" pore water compositions

Pump water from 1 – 2 m – depth

Shallow Pore Water Profiles – Nutrients

- Loss of NO₃ to sediments homogeneous
- NH₄ and SRP sources to water column heterogeneous; depends on sediment compositions and/or sedimentation rates

Shallow Pore Water Profile – Metals and Sulfide $Mn (\mu g/L)$ $Fe(\mu g/L)$ $HS^{-}(mg/L)$ 10 20 0 40 10 20 30 40 50 60 70 80 30 10 20 30 40 50 60 0 0 Depth below S-W interface (cm) 5 5 5 Diffusive 10 10 10 sources 15 15 15 FeS 20 20 20 precipitation 25 25 25 $= D_s \frac{dC}{dz}$ 30 30 30 35 35 35 Rapid sedimentation; 40 40 -**Elevated OC?** --CL5----RM0.7 ---MFL7 \rightarrow CL12

- All sources to water column
- Major variations may relate to sedimentation rate

Pore water Chemistry – PCA

- Redox sensitive solutes and nutrients controlled by 1st component.
- Inverse correlation between oxidized and reduced species
- Fe, Ca & Mg not related
 - Ca and Mg carbonates
 - Fe –sulfide influence

Diffusive Flux Rates – by site

Heterogeneous fluxes from variations in pore water compositions

Whole River Diffusive Fluxes

Assumes:

- bottom area = 0.23 km²
- Full range of heterogeneity is captured
- Heterogeneity has normal distribution

Diffuse fluxes vs Silver Spring fluxes

Solute	Diffuse flux (kg/day)	Spring flux (kg/day)	Diffuse flux relative to spring flux (%)	X
Fe	0.04	0.41	9.89	
Mn	0.01	0.41	2.43	
SRP	0.46	24.00	1.90	
NH_4	2.58	30.94	8.35	
NO ₃	-0.95	4087.24	0.02	
HS⁻	4.38	0.00	100.00	

- Red "large" fluxes compared with spring solute discharge
- Really require understanding of ecosystem needs for each solute

Advective Fluxes: Hydraulic conductivity (K), head gradients (∆h), and Darcy's Law

- CTD installed to compare river elevation and pore water head
- Use the same piezometers for measuring hydraulic conductivity
- Horizontal K
 - Screened PVC
 - Rising and falling head tests
- Vertical K
 - PVC open on bottom
 - Falling head tests

Two wells:

- Piezometer in sediments
- Stilling well in river

Hydraulic Conductivity

- Similar: Most within ~1 2 orders of magnitude
 - Falling head > Rising head
 - $K_h \ge K_v$
- High: clean sand to silty-sandy aquifers

Head Gradients

- Measurements:
 - 15 minute intervals (blue)
 - 5 10 day moving average (orange)
- Corrections:
 - Field measurements of Δh
 - Offset artifacts from downloading

Smoothed Head Gradients

• Variable Δh

- No clear relationship with rainfall
- Possible lag?

- No rapid
 precipitation
 response
 - Possible ~ 6
 month lag

(Florea et al., 2006)

Downstream variation in Δh

- Downstream decrease in Δh ?
- Missing data from RM0.7
 - During high Δh at MFL7

Specific discharge

- K_h for rising head only; similar to falling head
- K_v from in situ falling head

Solute Fluxes = q * [X]

Solute Fluxes

Solute	Spring (kg/day)	Diffusive flux (kg/day)	% of spring load	Adv _{hor} (kg/day)	% of spring Ioad	¹ Adv _{ver} (kg/day)	% of spring load	² Adv _{ver} (kg/day)	% of spring load
NO3-N	4087	-0.95	0.02	0.25	0.01	0.07	0.00	0.43	0.01
NH4-N	30.94	2.58	8.35	2.44	7.88	0.68	2.19	9.30	30.06
SRP	24	0.46	1.9	0.06	0.27	0.02	0.07	1.90	7.92
Fe	0.41	0.04	9.89	0.02	4.90	0.01	1.36	0.03	7.65
Mn	0.41	0.01	2.43	0.02	5.53	0.01	1.54	0.02	5.99
HS-	0	4.38	100	48.56	100	13.53	100	18.45	100
					N 22	1		2-	

¹Max Conc.

²Deep pore water

Summary

- Shallow pore water compositions highly variable
 - Predictable reactions
 - Generates range of potential fluxes
- Advective and diffusive fluxes about same order of magnitude
- Benthic fluxes may be 10 to 50% of total spring load, depending on solute
- Order relative to spring fluxes:
 - NH₄-N > SRP ~ Fe ~ Mn
 - Sole H₂S source

Otestions? Discussion?

Crude Conceptual Diagram

- 1. Vertical diffusion from sediments (done)
- 2. Lateral and vertical advection (magnitudes TBD)
- 3. Sediment erosion and deposition down stream meanders

Some New (Pertinent) Results?

(Ichetucknee River)

CFC age dates

 CFC11
 CFC12
 CFC113

• More or less coherent

Martin et al., 2016, J Hydro

Water Age vs Sampling time

- ~17 yr record
- Water age increase with time
 - Increase ~0.3 to 0.7 yr/yr
- Why?
 - Increasingly older water = longer/deep flow paths

Age vs Solutes – Inverse relationships

Older with lower DO and less NO₃

- more reducing?

Rainfall vs El Niño and AMO

- Excess rain during El Niño in AMO cool phase
- Rain deficit during AMO warm phase

Regional DEM

LIDAR Image

- Importance
 - Distribution of lakes and wetlands
 - Distribution and composition of highlands

Images thanks to Harley Means, FGS

Regional DEM

LIDAR Image

- Cross sections
 - Show stratigraphy

Faulkner 1973, USGS WRI 1-73

 Regional uplift of Peninsular Arch

Cross Sections

Regional uplift causes

- Exposure of Ocala Group rocks (Floridan aquifer) west of Silver spring
- Blocking eastward flow creates springs
- Silver River flows across confining unit

Expanded LIDAR

- Upland outcrops
 - Floridan aquifer
 - Silver River flows across confining sediments
- Sediment may limit flow to Silver River from Floridan
 - Possibly large fluxes of solutes from reactions in sediments
- Sediments compositions
 - Deposited in quiescent setting?Lake bed?
- Drainage to river from surrounding wetlands?

Sedimentary Material

- Sediments consist of interbedded organic C-rich layers and shell-hash layers
- Lower portion higher carbonate content, lower OC contents

Sediment Composition: OC, TN, TP

- OC in cores vary:
 - Nearly 50% OC upstream shallow depths
 - Decrease to ~5 to 20% downstream
- TN contents vary similarly to OC
- C/N ratios ~ constant
- C/P and P/N ratios variable
- See also Mitra's poster
 - discussion of possible OC sources
 - δ^{13} C, δ^{15} N, C/N ratios

River Corridor Science

- Watershed perspective:
 - Overland flow
- Groundwater basin perspective:
 - Groundwater source
 spring vent;
 benthic sediment
- Combined:
 - controls river corridor ecosystems
 - Our interest in Silver River (and other spring runs)

SAV – Benthic flux relationship

Benthic fluxes:

- May be small relative to stream flow, but...
- May be important to low flow, stagnant areas
- Benthic solutes (e.g., H₂S) could be very important

Benthic fluxes

Benthic Sediment Distribution

- 14 transects
- Thickness 1 to > 6 m
- Sediment distributed along entire river

Benthic Sediment Distribution

- Focus on four transects:
 - Coring: sediment composition
 - In situ hydrologic parameters: K, dH/dz
 - Pore water collection; solute analysis
 - Sediment age dating

Regional DEM

LIDAR Image

- Importance
 - Distribution of lakes and wetlands
 - Distribution and composition of highlands
 - Sediment age would be good test of hypothesis

Images thanks to Harley Means, FGS

Sedimentation Rates

- Fairly consistent sedimentation rates except RM0.7
 - RM0.7 suggests rapid sedimentation
 - Rapid sedimentation (young sediment) suggest river also eroding

- All γ counting
- Provide ²²⁶Ra activities
- Slow and difficult

1001 $^{226}Ra \rightarrow X \rightarrow ^{210}Pb \rightarrow ^{206}Pb$

Porewater Chemistry – PCA

- Redox sensitive solutes and nutrients controlled by 1st component.
- No inverse correlation between oxidized and reduced species → other controlling factors than OC.
- Fe may be controlled by complex set of processes.

Compared with Ichetucknee fluxes

- Stars represent estimates for Ichetucknee River (Kurz et al., 2015; FW Science)
- Fe and Mn lower (sediment composition?)
- P similar

Silver River vs Lakes

Lake data: Reddy et al;. 1996 (Lake Apopka: NH₄-N, SRP); Moore et al., 1997 (Lake Okeechobee: SRP); Small et al., 2014 (Lake Huron, Lake Erie: All solutes); Urban et al., 1997 (Lake Sempach, Swizerland: All solutes); Chowdury and Bakri, 2006 (Australian Lakes: NO₃-N, NH₄-N, SRP)