<u>Annual Report</u>: Springs Ecosystems Supergroup: Hydraulics and Hydrodynamics

David Kaplan (UF Lead), Pete Sucsy (SJRWMD Lead), Ed Carter, Alexis Johnson, Nathan Reaver, Joseph Stewart, Yanfeng Zhang

September 1, 2015

Integration of Research Elements

H&HObjectives (from 7/2/14 Meeting)

SJRWMD Team

- Predict unsteady water level profiles as f(Q, aquatic vegetation)
- 2. Predict 3D **velocities** in meadowtype (e.g., *Sagittaria*) and canopytype (e.g., *Hydrilla*) SAV
- Develop guidance for selection of Mannings n in different channel types (vegetation type, substrate)
- 4. Develop vegetative resistance and/or turbulence algorithms for
 3-D hydrodynamic modeling

<u>UF Team</u>

- 5. Links to 3-D modeling: velocity validation, turbulence msmnts.
- 6. Measure **velocity** and **RTDs** under variety of Q and management
- Quantify the location and magnitude of hyporheic vs. channel storage and exchange
- 8. Identify **critical shear stresses** for entrainment and detachment of filamentous algae

Mostly Data

Mostly Models 🔶

H & H Objectives (simplified)

SJRWMD Team

"...determine whether velocity is an important nonnitrate factor influencing the community structure and function of primary producers in the system." (Chapter 6.4)

<u>UF Team</u>

Mostly Models 🔶

Mostly Data

H & H Objectives (simplified)

"...determine whether velocity is an important nonnitrate factor influencing the community structure and function of primary producers in the system." (Chapter 6.4)

<u>UF Team</u>

Mostly Data

Mostly Models 🔶

Today's Outline

1. Dye trace experiment

- Velocity and residence time distributions
- EFDC model calibration
- 2. Critical velocity/shear stress
 - In-situ flow-ways
 - Optical methods
- 3. EFDC Modeling
 - Domain development
 - Friction/turbulence formulation
 - Initial calibration

1. Dye Trace – Background

- <u>**Reach-scale</u>** hydrologic characterization</u>
- Calculate residence time and exchange rates with storage zones

 Nutrient uptake and cycling potential
- Determine if river "behaves" substantially different under different conditions:
 - Channel roughness effects (vegetation build-up downstream?)
 - Water surface profile effects (Δ up/downstream river stage?)
 - Couple with EFDC model

1. Dye Trace – Background

- Release a tracer; monitor its movement through the system
- Salts, dyes, labeled molecules, etc.
- Measure at set location over time: breakthrough curve (BTC)
- Fitted BTCs → transport properties: advection, dispersion, transient storage...

1. Dye Trace – Methods

- Injected 18.9 L of 20% Rhodamine WT at Mammoth Vent
- Tracked dye at 9 fixed stations (3 in-stream fluorometers and 9 ISCO automated samplers)
- Collected 318 grab samples to characterize differential mixing

Dye Study at Silver Springs March 4, 2015

1. Dye Trace – Methods

1-D Advection-Dispersion Equation vs. OTIS

$$\frac{\partial C}{\partial t} = -\frac{Q}{A}\frac{\partial C}{\partial x} + \frac{1}{A}\frac{\partial}{\partial x}(AD\frac{\partial C}{\partial x}) + \frac{q_{LIN}}{A}(C_L - C) + \alpha(C_S - C)$$
$$\frac{dC_s}{dt} = \alpha \frac{A}{A_s}(C - C_s)$$

Q

t

x

α

- main channel cross-sectional area $[L^2]$
- storage zone cross-sectional area [L²]
- main channel solute concentration $[M/L^3]$
- lateral inflow solute concentration $[M/L^3]$
 - storage zone solute concentration [M/L³]
- dispersion coefficient [L²/T]

A

 A_S C

 C_L

 C_{S}

D

- volumetric flow rate $[L^3/T]$
- q_{LIN} lateral inflow rate [L³/T–L]
 - time [T]
 - distance [L]
 - storage zone exchange coefficient [/T]

1. Dye Trace – Methods

- Fitting model to data (get best fit parameters)
- Objective function: e.g., min(SSE), weighting?
- Bayesian parameter fitting
- Parameter identifiability and uniqueness (Kelleher et al. 2013)

Kelleher, C., et al. "Identifiability of transient storage model parameters along a mountain stream." *Water Resources Research* 49.9 (2013): 5290-5306.

Figure: Ed Carter, SJRWMD

- Three <u>upstream</u> peaks (2 back channel flowpaths)
- Full mixing not achieved by 1200 m

- Three <u>upstream</u> peaks (2 back channel flowpaths)
- Full mixing not achieved by 1200 m

- <u>Downstream</u> delay and attenuation
- Comparison to previous study...

- Spring bowl cleared in <6 hours
- Back channel flow: delayed, 2-paths, substantial portion of flow

1. Dye Trace – Results: 2009 vs. 2015

1. Dye Trace – Results: 2009 vs. 2015

Parameter	2009	2015	Units
Q	15.5	20.0	m ³ /s
L	5300	5300	m
А	73.4	80.8	m ²
A _S	18.1	17.3	m ²
D	10.7	5.8	m ² /s
α	0.00001	0.00005	1/s
τ	418	357	min
u	0.21	0.25	m/s

1. Dye Trace – Results: Standard vs. Bayesian

1. Dye Trace – Results: Standard vs. Bayesian

D m^2/min

1. Dye Trace – Results: EFDC vs. Measured

- EFDC vs. Measured Data
 - Initial simulation of pulsed dye release at Mammoth Vent
 - Compare to data observed from field experiment...

Today's Outline

1. Dye trace experiment

- Velocity and residence time distributions
- EFDC model calibration

2. Critical velocity/shear stress

- In-situ flow-ways
- Optical methods

3. EFDC Modeling

- Domain development
- Friction/turbulence formulation
- Initial calibration

2. Critical Velocity/Shear Stress

2. Critical Velocity/Shear Stress

King, Sean A. "Hydrodynamic control of filamentous macroalgae in a sub-tropical spring-fed river in Florida, USA." Hydrobiologia 734.1 (2014): 27-37.

A. Flow-ways

- Submerged structure placed in flat areas with relatively uniform flow
- Deployed with "control" structure for comparison
- Modify opening to channel or exclude flow
- Measure velocity profiles, cover, downstream transport
- <u>Status</u>: scouting locations, developing prototype...

B. Optical Methods

- <u>Goal</u>: collect algal cover and velocity data over wide area to explore correlations and critical velocity
- Current methods impractical for high resolution, spatially distributed data and relies on human estimation
- We seek a rapid, quantitative method to cover large areas (image processing)

$$Color = \log(Band \ 1) - \log(Band \ 2) = \log\left(\frac{Band \ 1}{Band \ 2}\right)$$
$$ColorBG = \log(B) - \log(G) = \log\left(\frac{B}{G}\right)$$
$$ColorGR = \log(G) - \log(R) = \log\left(\frac{G}{R}\right)$$

B2. Chromaticity – Pixel-based

- E.g., chromaticity of SAV does not overlap with epiphytic algae
- For 50% algal cover, chromaticity concentrated in the same locations
- Adding spatial (x,y) information allows image clustering

Chromaticity pixel distributions of various algal covers

B2. Chromaticity – Pixel-based

<u>**Itchetucknee</u>**: Three Clusters (SAV, benthic algae, bottom)</u>

<u>**Rainbow**</u>: Two Clusters (SAV, benthic algae)

<u>Silver</u>: Two Clusters (SAV, benthic algae)

B1. Average Image Color Shift

• Good correlation with both BG and GR

- Good correlation with both BG and GR
- Training image and field data: similar slope

- Good correlation with both BG and GR
- Training image and field data: similar slope
- Both B-G color and algal cover ~ velocity

2. Critical Velocity – Next Steps

Today's Outline

- 1. Dye trace experiment
 - Velocity and residence time distributions
 - EFDC model calibration
- 2. Critical velocity/shear stress
 - In-situ flow-ways
 - Optical methods
- 3. EFDC Modeling
 - Domain development
 - Friction/turbulence formulation
 - Initial calibration

3. EFDC Modeling – Background

- Contemporary trends: declining discharge and increasing pool elevation
- Flow \rightarrow Vegetation \rightarrow Flow
- <u>EFDC</u>: 3-D hydrodyanamic model to incorporate interactions between velocity, discharge, stage and flow resistance (veg)

From Baird and Johnson, 2014.

3. EFDC Modeling – Background

Apparent shift in stage-discharge relationship in Silver River:

- 1. Increased spatial coverage of submersed aquatic vegetation?
- 2. Expansion of hydrilla in the lower Silver and Ocklawaha?
- 3. Reconfiguration of vegetation under low discharge?

teli copte))

Figure by Ed Carter

$$\partial_{t}(mHu) + \partial_{x}(m_{y}Huu) + \partial_{y}(m_{x}Hvu) + \partial_{z}(mwu) - (mf + v\partial_{x}m_{y} - u\partial_{y}m_{x})Hv$$

$$= -m_{y}H\partial_{x}(g\zeta + p) - m_{y}(\partial_{x}h - z\partial_{x}H)\partial_{z}p + \partial_{z}(mH^{-1}A_{V}\partial_{z}u) + Q_{u} - c_{t}\sqrt{u^{2} + v^{2}}umH$$
(1)

$$\partial_{t}(mHv)| + \partial_{x}(m_{y}Huv) + \partial_{y}(m_{x}Hvv) + \partial_{z}(mwv) + (mf + v\partial_{x}m_{y} - u\partial_{y}m_{x})Hu$$

$$= -m_{x}H\partial_{y}(g\zeta + p) - m_{x}(\partial_{y}h - z\partial_{y}H)\partial_{z}p + \partial_{z}(mH^{-1}A_{V}\partial_{z}v) + Q_{v} - c_{t}\sqrt{u^{2} + v^{2}}vmH$$
(2)

$$\partial_z p = -gH(\rho - \rho_0)\rho_0^{-1} = -gHb$$
 (3)

 $\partial_t(m\zeta) + \partial_x \bigl(m_y H u \bigr) + \partial_y (m_x H v) + \partial_z (mw) = 0$

$$\partial_t(m\zeta) + \partial_x\left(m_y H \int_0^1 u dz\right) + \partial_y\left(m_x H \int_0^1 v dz\right) = 0$$

 $\rho = \rho(p, S, T)$

Environmental Fluid Dynamics Code

- 3-D, vertically hydrostatic, free surface, turbulent-averaged flow equations
- Dynamically-coupled transport equations for turbulent kinetic energy, turbulent length scale, salinity and temperature
- Applied to entire Silver River (finer scale) and Lower
 Ocklawaha from Moss Bluff to Eureka (coarser scale)

1. Defining the shoreline

- 2. Defining bottom type
- 3. Model grid development
- 4. Model formulation

- 1. Defining the shoreline
- 2. Defining bottom type
- 3. Model grid development
- 4. Model formulation

Bare	Sandy, rocky, or muddy bottom with less than 5% rooted vegetation. Logs may be present.
Patchy	Clumped, thin, or widely spaced vegetation.
Vegetated	Continuously vegetated with the bottom mostly obscured; open water above canopy deeper than 1 m.
Heavily Vegetated	Continuously vegetated with the bottom mostly obscured; vegetation takes up the majority of the water column.
Topped Out	Vegetation reaches completely to the surface; emergent vegetation may be present.
Trees	Extensive roots and trunks of cypress and other trees.

- 1. Defining the shoreline
- 2. Defining bottom type
- 3. Model grid development
- 4. Model formulation

- Curvilinear, orthogonal grid (developed jointly by Jones Edmunds, Janicki, SJRWMD)
- 13,439 horizontal cells; 8 vertical cells: 107,512 total
- Cell size variable; average horizontal cell length = 5.8 m

- 1. Defining the shoreline
- 2. Defining bottom type
- 3. Model grid development
- 4. Model formulation

- Curvilinear, orthogonal grid (developed jointly by Jones Edmunds, Janicki, SJRWMD)
- 13,439 horizontal cells; 8 vertical cells: 107,512 total
- Cell size variable; average horizontal cell length = 5.8 m

Α.

- 1. Defining the shoreline
- 2. Defining bottom type
- 3. Model grid development
- 4. Model formulation

3. EFDC Modeling – Results

- **1. Defining the shoreline**
- 2. Defining bottom type
- 3. Model grid development
- 4. Model formulation

3. EFDC Modeling – Results

Hydrodynamic Model Test: May 2014

- 17 m³ s⁻¹ (605 cfs)
- Downstream stage 10.75 m (35.27 ft) at Conner
- Compare use of (unrealistic) Manning's n vs. vegetation algorithms (SAV drag)
- Uncalibrated...

3. EFDC Modeling – Results

Hydrodynamic Model Test: May 2014

- Sensitivity analysis:
 - Veg. parameters: density and <u>height</u>
 - Discharge
 - Reconfiguration...

3. EFDC Modeling – Initial Conclusions

Apparent shift in stage-discharge relationship in Silver River:

- 1. Increased spatial coverage of submersed aquatic vegetation?
- 2. Expansion of hydrilla in the lower Silver and Ocklawaha?
- 3. Reconfiguration of vegetation under low discharge?

Whitford, 1952:

"After the first mile Silver Springs run becomes narrow and the banks heavily wooded. It also receives some brown water down run. Consequently *about 2 ¹/₂ miles from the boil flowering plants largely disappear* probably due to reduced light. Mats of Vaucheria with some filamentous blue-green algae, and a few of the usually dominant diatoms, are abundant in the shallows. The deeper channel has *relatively little plant life*."

Odum,1957:

"Except for its thick bed of rich muck Silver River would be a rushing canal through a pipe of limestone rock. *Further downstream below the study area it is of this nature*"

3. EFDC Modeling – Initial Conclusions

Apparent shift in stage-discharge relationship in Silver River:

- 1. Increased spatial coverage of submersed aquatic vegetation?
- 2. Expansion of hydrilla in the lower Silver and Ocklawaha?
- 3. Reconfiguration of vegetation under low discharge?

Whitford, 1952:

"After the first mile Silver Springs run becomes narrow and the banks heavily wooded. It also receives some brown water down run. Consequently *about 2 ½ miles from the boil flowering plants largely disappear* probably due to reduced light. Mats of Vaucheria with some filamentous blue-green algae, and a few of the usually dominant diatoms, are abundant in the shallows. The deeper channel has *relatively little plant life*."

Odum,1957:

"Except for its thick bed of rich muck Silver River would be a rushing canal through a pipe of limestone rock. *Further downstream below the study area it is of this nature*"

...estimated velocity = 0.21 m/s during Odum study mud, mud/sand, sand, rock: 0.08, 0.11, 0.16 and 0.22 m/s & "little or no SAV" >0.25 m/s (Hoyer et al. 2004)

3. EFDC Modeling – Initial Conclusions

Apparent shift in stage-discharge relationship in Silver River:

- 1. Increased spatial coverage of submersed aquatic vegetation?
- 2. Expansion of hydrilla in the lower Silver and Ocklawaha?
- 3. Reconfiguration of vegetation under low discharge?
- Velocity may play a role in determining vegetative structure and density, especially downstream (e.g., Odum)
- Evidence for recent expansion of vegetation cover in Silver River is not convincing (Duarte et al. 1990; FWC 2014)
- Hydrilla in Ocklawaha? Only recently observed (2011; FWC 2014) and seasonally removed via discharge?
- Vegetation reconfiguration? Model sensitivity to veg. height; lower discahrge/velocity after prolonged drought (1999-2000)
- Likely a combination of all three...

Thanks! Questions?

- 1. Dye trace experiment
 - Velocity and residence time distributions
 - EFDC model calibration
- 2. Critical velocity/shear stress
 - In-situ flow-ways
 - Optical methods
- 3. EFDC Modeling
 - Domain development
 - Friction/turbulence formulation
 - Initial calibration

