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EXECUTIVE SUMMARY 

A large-scale acoustic survey was conducted between May 4 - July 1, 2010, with the objective of 

quantifying the abundance and distribution of seasonal drift macroalgae in the Indian River Lagoon.  

The survey was conducted along the same pre-planned survey lines (running east-west and spaced 

200m apart) used in 2005 and 2008.  Indian River was surveyed from the Sebastian Inlet to its 

northernmost extent in the Titusville area.  Banana River was surveyed from its convergence with 

the Indian River northward to the Federal Manatee Zone near Cape Canaveral.  River banks were 

surveyed to a minimum depth of approximately 1.3 m.  Hydroacoustic data were collected with the 

same BioSonics DT-X echosounder and multi-plexed 38 and 418 kHz digital transducers used in the 

2008 survey (the 2005 survey utilized a QTC system).  Hydroacoustic data were processed with 

BioSonics Visual Bottom Typer (VBT) seabed classification software to obtain values of E0 (pre-

bottom scatter), E1′ (1
st
 part of the 1

st
 echo waveform), E1 (2

nd
 part of 1

st
 echo), E2 (complete 2

nd
 

echo), and FD (fractal dimension characterizing the shape of the 1
st
 echo).  A training dataset was 

compiled from 180 ground-validated hydroacoustic samples collected across the extent of the study 

area.  Following quality analysis the 38 and 418 kHz datasets were merged and submitted to a series 

of three discriminant analyses (DA) to refine the training samples into three pure end-member 

categories; BARE (bare substrate), DMA (drift macroalgae, ~5-20cm), and ShortSAV (non-DMA, 

~5-10cm).  The Fisher‟s linear discriminant functions from the third and final DA were used to 

classify each of the 400,000+ hydroacoustic survey records as either BARE, ShortSAV, or DMA.  

Percent cover of drift macroalgae was computed for blocks of ten sequential records.  Drift 

macroalgae biomass was computed as the product of percent cover, area surveyed, and wet weight of 

drift macroalgae.  Drift macroalgae biomass was found to be 102,162 metric tons (wet weight) 

within the 281.6 km
2
 study area (compared to 69,859 metric tons in 2008).  Average DMA cover 

was greater in the Indian River (19.7%) than in the Banana River (7.3%).  The pattern of coverage 

differed between the two systems.  Drift macroalgae cover was patchier within Indian River, with 

several large patches that had canopy heights in excess of 15 cm.  Cover within Banana River was 

more sparse, short and equitably distributed in comparison.  The overall predictive accuracy of total 

SAV (i.e. ShortSAV plus DMA) was 81.6% (n=359) at three levels of cover (0-33, 33-66, and 66-

100%).  To better understand the dynamics of drift macroalgae propagation and transport, a portion 

of Indian River was surveyed at the beginning, middle and end of the survey.  The boundaries of 

drift macroalgae patches changed little, but cover thinned considerably by the third survey.  The 

incorporation of dual-frequency digital transducers in conjunction with new post-processing 

techniques developed in 2008 realized the goal of establishing an accurate, efficient, and temporally 

consistent method for acoustically mapping drift macroalgae biomass. 



 

 

INTRODUCTION 

Drainage of the St. Johns River marshlands for agricultural development began in the late 19
th
 

century and rapidly accelerated in the 1940s and 1950s.  By the early 1970s nearly two-thirds of the 

historical marshlands had been drained.  During this time a number of canals were also built to divert 

water from the Upper St. Johns Basin into the Indian River Lagoon.  These and other hydrological 

alterations have subjected the estuarine Indian River Lagoon to pulses of freshwater and nutrient-rich 

agricultural runoff.  Extensive commercial and residential development over past decades has added 

to the list of anthropogenic disturbances to water quality.  Reduced water transparency, variable 

salinities, and elevated nutrient levels have contributed to a shift from seagrass to macroalgae.  For 

example, the areal coverage of seagrass in the area of the Sebastian Inlet has declined by 

approximately 38% between the years 1951-1984 (Goodwin & Goodwin, 1976).  In an effort to 

restore and preserve the lagoon, the IRL Program was created in 1996 under the leadership of the St. 

Johns River Water Management District.  The immediate goals were to improve water and sediment 

quality and monitor seagrass beds, with an ultimate goal of reclaiming historical seagrass ranges.  A 

component of this initiative involved a better understanding of seasonal drift macroalgae blooms, 

which (1) can exceed the biomass of seagrass in some areas of the lagoon (Virnstein & Carbonara, 

1985), (2) exclude seagrass by shading (den Hartog, 1994), and (3) potentially act as a nutrient sink 

(Davis et al., 1983).  Beginning in 2002 NCRI scientists began work on methods for the acoustic 

remote sensing of drift macroalgae using QTC and Echoplus echosounders (Riegl et al., 2005).  In 

2005, the author conducted the first lagoon-wide survey using a QTC echosounder.  While these 

early attempts showed promise, predictive accuracies hovered near 50%.  The results presented in 

this chapter began with a 2007 pilot-program utilizing a BioSonics DT-X digital echosounder.  It is 

with this system that the goal of a highly accurate and repeatable lagoon-wide survey of drift 

macroalgae biomass was met. 

 



 

 

METHODS 

Survey Area 

The acoustic survey was completed between the dates of May 4 - July 1, 2010, during the historic 

peak of drift macroalgae biomass.  Indian River was surveyed from its origin in the Titusville area 

(28.766
o
N) to just below the Sebastian Inlet (27.826

o
N) (Appendix A1).  Banana River was surveyed 

from the Federal Manatee Zone near Cape Canaveral (28.433
o
N) southward to its convergence with 

Indian River in the Melbourne area (28.157
o
N).  The survey vessel was navigated along the same 

pre-planned lines used in the 2005 and 2008 surveys, running east-west and spaced 200 m apart.  The 

depth of the water column surveyed ranged from 1.3 to 4.3 m and averaged 2.2 m. 

 

Sonar Equipment 

The survey was conducted from a 7.5 m v-hull boat with a 0.5 m draft (Figure 1).  Hydroacoustic 

data were acquired with a BioSonics DT-X echosounder and two multiplexed, single-beam digital 

transducers with full beamwidths of 10
o
 (38 kHz) and 6.4

o
 (418 kHz), operated at 5-Hz sampling 

frequency and 0.4 ms pulse duration.  This was the same system used for the 2007 pilot study and the 

2008 lagoon-wide survey.  The two transducers were located on a swing-arm mounted to the 

gunwale.  The GPS antenna was mounted directly above for optimal integration of acoustical and 

positional data strings.  Global positioning data were collected with a Trimble Ag132 dGPS, 

differentially corrected against the WAAS signal to achieve positioning accuracies less than 0.9 m 

horizontal dilution of precision.  The dGPS signal was interfaced with navigational software to 

provide real-time monitoring of vessel position with respect to the aerial images and pre-planned 

survey lines.  To avoid turbulence-induced signal contamination, evident as a rolling oscillation on 

the real-time Visual Acquisition display, vessel speed was adjusted to maintain a net speed 



 

(vessel+drift) of approximately 4.5 knots. 

 

Figure 1.  Survey equipment.  (left)  Swing-arm in horizontal (traveling) position with 420 and 38 kHz 

transducers and Trimble antenna.  (middle)  Inside v-berth of survey vessel with BioSonics DT-X 

echosounder, Trimble receiver, and acquisition PC.  (right)  Monitor displaying gps-navigation over pre-

planned lines and real-time echo returns. 

 

Data Processing 

To provide continuity with previous surveys, the same data processing workflow was followed as in 

2008. Thus, results of the surveys are directly comparable.  The complete workflow for the post-

processing, quality assurance, and classification of hydroacoustic data is shown in Figure 2.  The 38 

and 418 kHz hydroacoustic data were processed with BioSonics Visual Bottom Typer (VBT) seabed 

classification software (v2) to obtain the following acoustic energy parameters (computed as the time 

integral of the squared amplitude of echo intensity); E0 (pre-bottom backscatter), E1‟ (the 1
st
 part of 

the 1
st
 echo waveform), E1 (2

nd
 part of 1

st
 echo), and E2 (complete 2

nd
 echo).  VBT also computed a 

value of FD (fractal dimension characterizing the shape E1).  VBT allows the user to define the 

width of each Bottom Sampling Window in units of “samples”, i.e. the 41,667 Hz clock-speed of the 

DT-X internal processor.  This critical setting is better understood by converting to units of meters 

via the speed of sound in water, shown for representative echo envelopes acquired over bare 

substrate and over drift macroalgae (Figure 3).  The split between E1‟ and E1 was set such that E1 

would capture the trailing edge of the first echo.  This emphasized sensitivity to the presence of 

SAV, as scattering from the vegetative canopy increases the proportion of signal returning to the 

transducer in the trailing edge of the first echo.   



 

 

 

Figure 2.  Multiple discriminant analysis scheme for extracting pure end-member acoustic records from 

a catalog of 30-90 second hydroacoustic samples.  Only those catalog records (1) classifying correctly 

and (2) exceeding a minimum probability for group membership pass onto the next Discriminant 

Analysis.  The Fisher‟s Linear Discriminant Functions obtained from the 3
rd

 Pass Discriminant Analysis 

were used to classify survey data into one of three end-member classes (BARE, ShortSAV, or DMA). 



 

 

 

 

Figure 3.  Representative waveforms acquired over bare substrate and drift macroalgae.  The width of 

the E0, E1′, E1, and E2 Bottom Sampling Windows are shown in units of samples (bottom scale) and in 

units of meters (top scale). 

 

Quality Assurance 

Log-transformed values of E0, E1‟, E1, E2 and un-transformed values of FD were passed through a 

series of filters to identify and remove “irregular” hydroacoustic returns.  The first filter checked the 

differential depth between successive pings against a specified maximum value, designed to remove 

waveforms that contacted the seabed at angles exceeding normal-incidence, typically caused by 

excessive vessel roll.  The next filter removed records with depth-picks less than 1.3 m, the point at 

which the first and second echo returns are sufficiently separated for analysis.  The next filter 

removed records with depth-picks exceeding the 99.5 percentile, usually the result of grossly 

misshapen waveforms.  The remaining two filters protected against potentially excessive outliers by 

removing records for which any of the eight acoustic parameters fell beyond the 1 and 99 percentiles.  

Only those records for which all eight acoustic parameters passed all filters were passed onto the 



 

next stage of processing.  Of the 534,000 pings recorded during the survey, approximately 20% were 

removed by the filters and the subsequent  merging of the 38 and 418 kHz datasets.   

 

Normalizing to Reference Depth 

Depth normalization entails adjusting the width of the E1′ and E1 bottom sampling windows to 

maintain a consistent first echo division, as the echo predictably stretches and flattens with 

increasing depth.  Although VBT (v2) provided a depth-normalization algorithm for E1 (but not for 

E1′), the depth-normalized E1 was found to vary consistently with depth.  The residual depth 

contamination of E1 suggests other factors at work, as does the apparent contamination of E2, which 

should not require reference depth normalization provided an adequately wide sampling gate across 

the range of depths.  The other factors at work likely include less-than-perfect time-varied gain 

compensation and depth-variant proportions of specular and backscatter returns.    To produce depth-

invariant values of the acoustic energy parameters, log-transformed and filtered values of E0, E1‟, 

E1, and E2 and un-transformed values of FD were empirically normalized to median survey depth.  

Depth-normalization models were constructed using 96 60-second BARE training samples, for 

which it could be assumed that depth was the primary factor affecting the shape of echo returns (and 

not varying SAV abundance).  Linear and first and second order log functions were fit to plots of 

log(E) versus depth for each acoustic parameter (except the E0 of both frequencies and the 38 kHz 

E1 and FD, which did not require depth-normalization) (Figure 4).  Correction factors were applied 

to each hydroacoustic record, calculated as the ratio of model-predicted acoustic energy at actual 

depth divided by the model-predicted acoustic energy at the median depth.  The effectiveness of this 

method for treating depth-contamination is apparent as significant reduction in the slopes of the 

depth-normalized survey data (the complete survey dataset decimated to 20,000 records for plotting, 

before and after quality analysis and empirical depth normalization) (Figure 5).   



 

 

Figure 4.  Empirical depth normalization using 96 BARE training samples.  Depth trends of log-

transformed echo returns (open circles) and fitted curves (solid lines) used for empirical depth-

normalization of acoustic parameters.   The 38 and 418 kHz E0‟s and the 38 kHz E1 and FD did not 

require empirical depth-normalization. 



 

 

 

 

Figure 5.  Complete 2010 survey dataset, decimated to 20k records, to demonstrate the effective 

treatment of depth contamination.  Depth profiles of acoustic parameters, before (left) and after (right) 

quality analysis and empirical depth normalization (created from the BARE sub-set of training dataset). 



 

Training Dataset Collection and Processing 

A total of 217 training samples, all collected within the study area, were selected as potential 

candidates for submission to the training catalog.  Each catalog sample consisted of a 30-90 second 

hydroacoustic file and a geo-referenced video file, acquired as the vessel drifted in idle.  The training 

data were subjected to the same VBT post-processing, depth-normalization, and quality assurance as 

described previously for the survey data.  Each video was reviewed post-survey and assigned a 

percent coverage of (1) BARE (bare substrate), (2) ShortSAV (miscellaneous vegetation, typically 

5cm and up to ~10cm max), and (3) DMA (drift macroalgae, typically 5-20cm).  ShortSAV was 

typically Caluerpa prolifera but also included Halophila spp. and miscellaneous taxa of sparse 

macroalgae generally less than 5 cm tall.  DMA was a consortium of branched macroalgae, 

predominantly the rhodophyta Gracilaria tikvahiae and Hypnea cervicornis.  The primary distinction 

between ShortSAV and DMA was based on the three-dimensional cover.  If G. tikvahiae was present 

as sparse 5cm colonies it was categorized as ShortSAV, but if it was present as large stands of 

densely packed and unattached colonies standing 15cm high, it was categorized as DMA.   

 

Classification Workflow 

Ideally, the hydroacoustic records submitted to a supervised classification scheme should be pure 

end-member classes, i.e. either completely bare or contiguous SAV.  The catalog should also include 

as many locations as possible so that all ranges of depth and sediment class are adequately 

represented, to prevent extraneous geophysical factors from influencing the classification process.  

Because of the logistical difficulties of acquiring pure end-member hydroacoustic samples, e.g. 

finding and double-anchoring over a small patch of contiguous SAV, a novel method was developed 

for extracting pure end-member records from samples acquired over heterogeneous benthos. 

 



 

The 217 samples submitted to the training dataset were selected on the basis of high benthic 

homogeneity.  Samples with <10% total SAV cover were designated as BARE.  Samples with >50% 

short SAV cover and <10% drift macroalgae cover were designated as ShortSAV.  Samples with 

>33% drift macroalgae cover and <10% short SAV cover were designated as DMA.  After passing 

through quality assurance filters, the training dataset was subjected to two pre-classification 

„cleaning‟ steps to remove (1) outlier records within individual training samples and (2) outlier 

training samples.  First, the training data were submitted to a principle components analysis (PCA).  

The resulting principle components were partitioned into 16 groups using K-Means clustering.  116 

records belonging to six disproportionately small K-Means clusters (<0.5% of total records) were 

removed from the training dataset.  The training dataset was then submitted to an exploratory 

discriminant analysis (DA) using the three pre-defined classes (BARE, ShortSAV, DMA).  37 

samples (totaling 1,668 records) with low classification accuracies were removed from the training 

dataset.   

 

The remaining 180 training samples (9,313 records) were passed through a series of three 

discriminant analyses, using the 38 kHz E0, E1‟, E1, E2 and 418 kHz E0, E1‟, E1, E2, FD and depth 

as predictor variables.  The 38 kHz FD was not used because it was nearly invariant (Figure 4), 

presumably due to a combination of the short and wide 38 kHz echo waveforms and the wide E1′ 

sampling window (i.e. there was insufficient „tail‟ to compute the FD).  Only those records that (1) 

correctly classed by the discriminant analysis and (2) exceeded a minimum probability of group 

membership were passed onto the next DA (Figure 2).  This had the effect of refining the training 

dataset into the desired end-member classes.  For example, the small target offered by C. prolifera 

resulted in frequent false negatives, i.e. misses, within the ShortSAV training dataset.  It was 

important to remove these misses, so as to distinguish them from truly bare pings.  Similarly, 

hydroacoustic records acquired over bare sediment would need to be removed from a catalog sample 

ground-validated as 50% drift macroalgae and classified as DMA.  



 

Interpreting Discriminant Analysis Output 

A discriminant function (DF) is similar in form to a multiple regression equation.  The DF 

coefficients are computed to maximize discrimination between predefined groups.  Similar to a 

principle component analysis, the DF‟s represent the lumped contribution of independent variables.  

When there are more than two groups, the number of DF‟s equals the smaller of (i) the number of 

groups minus 1, or (ii) the number of variables, so in this study there were two DF‟s.  The first DF is 

the line through multivariate space that creates the greatest amount of between-group variance (i.e. 

discriminates between the most different groups), with each successive function contributing less 

than the preceding one.   

 

Classifying Hydroacoustic Records 

Discriminant analysis generates a set of Fisher‟s linear discriminant functions, derived from the 

linear combinations of predictor variables (E0, E1‟, E1, E2, FD, depth) that provide the greatest 

discrimination between the pre-defined groups (Figure 2).  The Fisher‟s linear discriminant functions 

from the third-pass DA were used to classify survey records by multiplying each Fisher‟s coefficient 

by the value of the corresponding acoustic variable, summing the products, and adding the constant 

to get a score for each of the three groups (BARE, ShortSAV, and DMA).  Each of the 400,000+ 

survey records passing QA were classified as the group with the largest discriminant score.  The final 

layer of classification was to compute the percent cover of BARE, ShortSAV, and DMA (as the 

percentage of DA-assignments within a block of ten sequential acoustic records), yielding a total of 

43,114 geo-located records of percent cover.  

 

Partitioning by SJRWMD Segments and ICW 

The 43,114 geo-located acoustic records were joined with a SJRWMD shapefile of Indian River 

Lagoon segments (IRL_Segments.shp) in ArcMap v 9.3.  These records were further sub-divided by 



 

clipping to a SJRWMD shapefile of navigation channels (ICW.shp).  The segment-average percent 

cover of ShortSAV and DMA were calculated as the simple average of acoustic records falling 

within a particular segment, either within or outside of navigation channels.  The area surveyed 

within each segment was obtained by clipping the segment shapefile to the actual survey extent. 

 

SAV Coverage Maps 

Ordinary point kriging, a geostatistical method based on the spatial autocorrelation inherent in 

landscape patterns, was used to produce spatially continuous maps of ShortSAV and DMA percent 

cover.  Each kriged contour feature was subsequently clipped to the perimeter of the area traversed 

within each survey tile, i.e. the boundaries of the contour maps do not extend beyond the area of 

acoustic sampling.   

 

Accuracy Assessment 

A total of 374 external accuracy assessment samples were collected in-line with the 2010 survey by 

intermittently slowing to idle speed, deploying a weighted video camera overboard, and continuing 

to record hydroacoustic data while simultaneously collecting video for a period of 30-60 seconds.  

The Trimble dGPS latitude and longitude and UTC time were burned onto the recorded video for 

post-survey synchronization with hydroacoustic data.  The accuracy assessment videos were 

reviewed post-survey and assigned a visually-estimated percent coverage of (1) bare substrate, (2) 

short SAV, and (3) drift macroalgae.  The ground-truth data were subjected to the same VBT post-

processing, depth-normalization, and quality assurance as described previously for the survey data.  

Of the 374 samples collected, 359 remained for accuracy assessment following QA, totaling 18,000+ 

hydroacoustic records.  Each hydroacoustic record was classified as either BARE, ShortSAV, or 

DMA using the same Fisher‟s linear discriminant functions used to classify the survey data.  The 



 

acoustically-predicted cover of BARE, ShortSAV and DMA was then calculated for each accuracy 

assessment sample as the simple average of the ~60 classified records per sample.   

 

The accuracy assessment was performed directly on the hydroacoustic records, not on the kriged 

contour plots of percent cover, because (i) biomass was calculated directly from individual 

hydroacoustic records, and (ii) the heterogeneous nature of the benthos would introduce uncertainty 

if the area sampled was not within the acoustic footprint.  A confusion matrix was constructed as a 

square array of numbers arranged in rows (discriminant analysis classification) and columns 

(ground-truth).  An accuracy assessment could not easily be conducted on the individual percent 

cover of drift macroalgae and short SAV, since many ground-truthing samples were a mixture of 

both.  The accuracy assessment was instead conducted on total SAV (ShortSAV plus DMA) grouped 

into three abundance categories; 0-33, 33-66, and 66-100% cover.  The overall accuracy (Po) was 

calculated as the sum of the major diagonal, i.e. correct classifications, divided by the total number 

of ground-truth samples.  Each diagonal element was divided by the column total to yield a 

producer‟s accuracy and by the row total to yield a user‟s accuracy.  The producer‟s and user‟s 

accuracies provide different perspectives on classification accuracy.  The producer‟s accuracy 

(omission/exclusion error) indicates how well the mapper classified a particular category, i.e. the 

percentage of times that substrate known to be sparsely covered was correctly interpreted sparse 

cover.  The user‟s accuracy (commission/inclusion error) indicates how often map categories were 

classified correctly, i.e. the percentage of times that a sample classified as sparse cover was actually 

sparse and not abundant or contiguous.  

 

The Tau coefficient is a measure of the improvement of classification accuracy over a random 

assignment of map units to map categories.  The form of Tau based on equal a priori probability of 

group membership (Te) was used for this study.  In this case, the probability of random agreement 

simplifies to the reciprocal of the number of categories (1/r), and Te is simply an adjustment of Po by 



 

the number of map categories.  As the number of categories increases, the probability of random 

agreement diminishes, and Te approaches Po.  Values of Te were calculated as follows: 

 

Tau coefficient for equal probability of group membership = Te = (Po – 1/ r) / (1 – 1/ r) 

 

RESULTS 

Verifying Temporal and Spatial Consistency 

Supervised classification requires temporal and spatial consistency of predictor variables over the 

course of acquiring catalog and survey data.  Otherwise, classification accuracy would diminish as 

the relationship between acoustic parameters and SAV abundance shifted, due to instrument drift 

(temporal inconsistency) or intrusion of extraneous geophysical factors into the acoustic signature 

(spatial inconsistency).  Temporal and spatial consistency was assessed using the 180 hydroacoustic 

samples constituting the training dataset.  These samples were collected throughout Indian and 

Banana Rivers, from Mims in the north to Wabasso in the south (~120 km distant).  71 training 

samples were collected in 2007, 44 in 2008, and 65 in 2010.  Temporal consistency was assessed 

from scatter plots of canonical variable scores of the first two (of two) discriminant functions 

generated from the first, second, and third-pass discriminant analyses (Figure 6).  The center-points 

(mean class value) and boundaries (1 standard deviation) are essentially identical for the 2007, 2008 

and 2010 training samples of all three classes (BARE, ShortSAV, DMA), clearly demonstrating the 

temporal consistency of the acoustic interpretation of bottom classes.  Spatial consistency was 

similarly assessed from scatter plots of the canonical variable scores from the third pass discriminant 

analysis (Figure 7).  The BARE sub-set of the training dataset, consisting of 94 60-second samples, 

was sorted by IRL Segments and the mean and standard deviation of canonical variable scores were 

computed for four regions of the Indian River (Mims to Wabasso North)  and two regions of Banana 

River (Cape Canaveral South to Satellite Beach).     



 

 

Figure 6.  Temporal consistency of training dataset (60-sec samples; 94 BARE, 24 ShortSAV, 62 DMA).  

Scatter plots of canonical variable scores of the first two discriminant functions from the 1
st
-3

rd
 DA‟s.  

Centerpoints denote group means, ellipses are dispersion (1 standard deviation) about x and y, 

calculated individually for samples acquired in 2007 (n=71), 2008 (n=44), and 2010 (n=65).  The 

refinement of the training dataset with successive DA passes is also evident as greater separation 

between groups. 

 

   

 

Figure 7.  Spatial consistency of training dataset (60-sec samples; 94 BARE, 24 ShortSAV, 62 DMA).  

Scatter plots of canonical variable scores of the first two discriminant functions of the 3rdPass DA.  

Centerpoints denote group means, ellipses are dispersion (1 standard deviation) about x and y.  BARE 

variable scores calculated for six regions within the Indian and Banana Rivers. 

 

The acoustic interpretation of bare substrate was very similar for all six regions of Indian and Banana 

Rivers.  Comparing Figures 6 and 7, while both temporal and spatial consistency were high, 



 

temporal consistency was slightly better than the spatial consistency, which is not surprising given 

the large variations in bottom types along the length of the rivers.   

 

Interpreting the Classification of the Training Dataset 

Recall that while training samples were selected on the basis of high benthic heterogeneity, issues of 

practicality required some compromise.  Samples with <10% total SAV cover were designated as 

BARE.  Samples with >50% short SAV cover and <10% drift macroalgae cover were designated as 

ShortSAV.  Samples with >33% drift macroalgae cover and <10% short SAV cover were designated 

as DMA.  The composite ground-validated cover of each category was computed as the average 

percent cover of the various training samples (post-survey review of spatially-coincident video), 

weighted by the number of acoustic records per sample.  The 94 BARE training samples submitted 

to the 1stPass DA averaged 96.8% bare substrate, the 24 ShortSAV training samples averaged 77.4% 

short SAV, and the 62 DMA training samples averaged 79.7% drift macroalgae (Figure 2).  

Therefore, the Producer‟s accuracies of the 1stPassDA should not equal 100%, but should instead 

(ideally) equal the ground-validated values.  The proper interpretation of the Producer‟s accuracy is 

explained below, using the DMA group as an example. 

 

It was known a priori that the 2918 acoustic records submitted to the 1stPass DA as DMA were not 

all acquired directly over drift macroalgae, as the composite ground-validated cover was only 79.7% 

(i.e. the DMA group contained 20.3% „impurities‟).  The purpose of the multi-pass DA scheme was 

to remove these „impurities‟, leaving behind only pure end-member records in the training datasets.  

This was made possible by the combination of narrow beamwidths and shallow depths, which 

produced acoustic footprints so small (~1 foot diameter) that it could be reasonably assumed that 

each ping insonified a „pure‟ bottom class, e.g. all bare substrate or all drift macroalgae (Figure 8).  

Thus, only 2325 (2918*0.797) of the 2918 DMA records would have actually insonified drift 



 

macroalgae and the remainder would have insonified bare substrate or short SAV.  Therefore, the 

1stPassDA Producer‟s accuracy of 72.7% was even more accurate than it might at first seem.  

Ground-validation found that 79.7% of the cover was drift-macroalgae and the acoustic classification 

predicted 72.7%. The internal accuracy for detecting drift macroalgae in a heterogeneous benthos is 

therefore 91% (=72.7/79.7).       

 

 

Figure 8.  Hypothetical drift macroalgae training sample.  60 seconds of acoustics and spatially-

coincident video collected with the survey vessel drifting approximately 15m, translating into 60 acoustic 

records (~0.31m diameter footprint, with considerable overlap).  To achieve pure end-member 

classification, the acoustic records acquired over bare substrate and short SAV were removed by 

multiple passes through discriminant analysis, retaining only those records that classified correctly and 

exceeded a minimum probability of group membership.   
 

 

Assessing the Training Dataset  (Internal Accuracy Assessment) 

The effect of successive discriminant analyses (DA) can be seen as an increasing separation of data 

clouds in the scatter plots of canonical variable scores (Figure 6), as a result of refining the variably 

heterogeneous training samples into pure end-member elements.  Continuing from the previous 

section, refinement was predominantly in the form of rejecting pings acquired over the minor 

constituents within a given training sample, e.g. rejecting the pings acquired over bare substrate 

within the DMA category.  In this multi-pass DA classification scheme, it was assumed that the 



 

acoustic records within the DMA training dataset that „mis-classified‟ as BARE and ShortSAV 

actually belonged to pings acquired over bare substrate and short SAV (and were thus not mis-

classes after all, but rather correct classifications of a heterogeneous benthos).  These records were 

removed from the training dataset by two additional DA passes (Figure 2).  Achieving pure end-

member categories required only a modest reduction in the total number of acoustic records (from 

9313 to 6232, or 33%), a strong indicator of a robust classification scheme.   

 

The duel-frequency acoustic dataset significantly improved discrimination between the three groups, 

as can be seen in the confusion matrices of the 1stPass DA of the training dataset at duel and single 

frequencies (Table 1).  The smaller-wavelength 418 kHz signal was more capable of detecting the 

low canopy and relatively sparse areal cover of ShortSAV, but there was a clear synergy when 

combined with the 38 kHz signal.  The 38 kHz signal was not as effective at discriminating bare 

substrate because it frequently confused bare silt/mud as drift macroalgae, due to signal 

reverberation into the loose sediment (which appeared similar to backscatter from the drift 

macroalgae canopy), but the combination of the 38 and 418 kHz signals improved the overall 

classification. 

 

Table 1.  Confusion matrices for 1st-Pass discriminant analysis of training dataset utilizing (a) 38 and 

418 kHz data, (b) 418 kHz only, and (c) 38 kHz only. 
 

 

 



 

The multi-pass DA classification was further checked for internal consistency by classifying the 

unrefined training dataset (the same data that was submitted to the 1stPass DA), using the Fisher‟s 

linear discriminant functions from the 3rdPass DA (Figure 9).  Predictions of bare substrate were in 

very close agreement with the ground-truthed values; the 94 BARE training samples classified as 

92.2% bare substrate, compared to a visually-estimated bare cover of 96.8%.  The DA model 

consistently under-predicted short SAV abundance, particularly at the highest level of SAV cover.  

The DA-predicted versus visually-estimated short SAV cover at the two levels of cover were 47.6% 

vs. 63.7% (21% under-prediction) and 43.7% vs. 94.8% (54% under-prediction).  The DA model 

performed well across the full range of drift macroalgae cover, under-predicting only slightly at the 

highest levels of cover.  The DA-predicted versus visually-estimated drift macroalgae cover was 

45.6% vs. 40.5% (13% over-prediction), 72.4% vs 69.0% (5% over-prediction), and 80.8% vs. 

95.2% (15.1% under-prediction).   

 

 

Table 2.  Fisher‟s Linear Discriminant Functions from 

3rdPass DA, used to classify hydroacoustic survey records. 

 

 

 

 



 

 

Figure 9.  Internal accuracy assessment of multi-pass DA classification.  Comparison of ground-truthed 

(closed symbols) and acoustically-predicted (open symbols) for classification of the un-refined training 

dataset.  Short SAV was binned into two levels of abundance.  DMA was binned into three levels.  Error 

bars are 95% CI.  Numbers in parenthesis denote the number of individual 60-second training samples.   

 

 

Classifying Survey Data 

The Fisher‟s linear discriminant functions (Table 2) resulting from the third-pass DA were used to 

classify each of the 400,000+ survey records as either bare substrate (BARE), short SAV 

(ShortSAV), or drift macroalgae (DMA).  This was done by multiplying each coefficient by the 

value of the corresponding acoustic parameter, summing the products, and adding the constant to get 

a score for each of the three categories.  Survey records were assigned to the category with the 

largest discriminant function score.  The final layer of classification was created by tallying the 

assignments for a range of ten consecutive records and computing the proportion of BARE, 

ShortSAV, and DMA assignments for each group of ten records.        

 

SAV Coverage Maps 

Ordinary point kriging, a geostatistical method based on the spatial autocorrelation inherent in 

landscape patterns, was used to produce spatially continuous maps of ShortSAV and DMA percent 



 

cover.  Each kriged contour feature was subsequently clipped to the perimeter of the area traversed 

within each survey tile, i.e. the boundaries of the contour maps do not extend beyond the area of 

acoustic sampling (Appendix A2-A9).   

 

External Accuracy Assessment 

A confusion matrix could not easily be produced for the individual categories of drift macroalgae 

and short SAV, since many ground-truthing samples were a mixture of both.  Instead, the percent 

cover of drift macroalgae and short SAV were summed and grouped into three abundance categories; 

0-33, 33-66, and 66-100% cover.  The important distinction is that the confusion matrix was based 

on the classified hydroacoustic records, not on the kriged contour plots of percent cover.  Performing 

accuracy assessment directly on the classified hydroacoustic records was deemed most appropriate, 

since biomass was calculated directly from individual hydroacoustic records.  The overall predictive 

accuracy for the 359 external accuracy assessment samples was 81.6% for the three coverage 

categories of total SAV cover.  The Tau coefficient for equal probability of group membership (Te) 

was 0.724 ± 0.061 (α=0.05), i.e. the rate of misclassifications was 72.4% less than would be 

expected from random assignment of hydroacoustic records to SAV cover (Table 3). 

 

To assess the accuracy of the individual predictions of drift macroalgae, the relationship between 

acoustically-predicted percent cover and the visually-estimated percent cover was also examined by 

simple linear regression.  Figure 10 displays the acoustically-predicted percent cover drift 

macroalgae versus the visually-estimated cover for each of the 359 external accuracy assessment 

samples.  To better illustrate the overall trends, the average predicted values were also calculated for 

ground-validated values in the range of 0-5, 5-10, 10-20, 20-40, 40-60, 60-80, and 80-100% cover.    

 

 



 

Table 3.  Confusion matrix of 359 external accuracy assessment samples comparing acoustically-

predicted versus visually-estimated for three abundance ranges of Total SAV (ShortSAV plus DMA). 

 

 

 

Figure 10.  External accuracy assessment of predictive cover models.  Acoustically-predicted values 

(right) and model residuals (left) of drift macroalgae for the 359 external accuracy assessment samples.  

Displayed as individual ground-truth samples (open circle) and as the average of samples falling within 

bins of ground-truthed cover (solid triangle).  Linear regression (---) was performed on individual 

samples.  Error bars are 95% CI.   

 

 

Accuracy of Drift Macroalgae Predictions  

As seen previously in the internal accuracy assessment of training data, acoustic classification of 

survey data performed well across the full range of drift macroalgae cover, as judged by both the 

scatter plot of predicted versus ground-truthed cover and the model residuals (predicted minus 

ground-truthed percent cover).  Cover was slightly under-predicted as ground-validated cover 



 

increased beyond 20% (as seen in the 2008 survey).   For the 29 accuracy assessment samples in the 

80-100% bin (average = 95.2%), 81.3% of the pings were acoustically classified as DMA (Figure 

10).   

 

Drift Macroalgae Biomass 

The average percent cover of ShortSAV and DMA was calculated individually for the SJRWMD 

segments shown in Appendix A1, using the ten-record averages of classified hydroacoustic records 

(Table 4, Figure 11).  The lagoon-wide percent cover of ShortSAV and DMA were found to be 6.5% 

and 17.9%, respectively (compared to 24.1% and 11.2% in 2008).   

 

Table 4.  Drift macroalgae biomass and proportions (0-1) of short SAV (~5-10cm<) and drift macroalgae 

cover, partitioned by SJRWMD segments and by proximity to navigation channels. 

 

 



 

The biomass of drift macroalgae within each SJRWMD segment was calculated as the product of the 

average percent cover of DMA, the area surveyed within a segment, and the wet weight of drift 

macroalgae (2000 metric tons per km
2
, as reported in the 2004 pilot study).  At the time of the survey 

(May 4 – July 1, 2010) the drift macroalgae biomass was found to be 102,162 metric tons (wet 

weight) within the 281.6 km
2
 study area (compared to 69,859 metric tons in 2008).  Drift macroalgae 

cover was patchier within Indian River, with several large patches that had canopy heights in excess 

of 15 cm.  Cover within Banana River was more sparse, short and equitably distributed in 

comparison.  The effect of depth on drift macroalgae zonation varied regionally.  In the northern 

Mims and Titusville South segments, the largest drift macroalgae accumulations were near the center 

of the river (Appendix A2, A4), whereas the Eau Gallie to Malabar accumulations were mostly on 

the eastern bank, between the spoil islands west of the ICW, and near causeways (Appendix A6, 

A8).  These differences were reflected in the depth profiles of drift macroalgae.  In the Mims and 

Titusville South segments, the depth profile of drift macroalgae was only marginally shallower than 

the depth profile of the survey area, whereas in the Eau Gallie to Malabar segments, the depth profile 

of drift macroalgae was considerably shallower than the depth profile of the survey area (Figure 12).  

This can be seen in the side-by-side track-plots of DMA and 418 kHz depth for the Eau Gallie and 

Crane Creek segments, where the DMA is almost exclusively sited near the west bank, the scalloped 

margins of the east bank, and near causeways. 

 
 
Figure 11.   Acoustically-predicted drift macroalgae cover by segment.  (white) 2008 survey.  (black) 

2010 survey.  



 

 

 

 
Figure 12.   Depth profile of acoustically-predicted drift macroalgae in the (a) Mims and (b) Titusville 

South segments of Indian River.  (solid blue) Cumulative frequency of depth for acoustic survey records 

with drift macroalgae cover greater than or equal to 40% (average of 10-record blocks).  (dashed line) 

Cumulative frequency of depth for all acoustic survey records.  
 

 

 

 
Figure 13.   Track-plot of the (a) acoustically-derived percent cover of drift macroalgae and (b) 418 kHz 

depth for Eau Gallie and Crane Creek segments of Indian River.  In the lower segments (Pineda South 

to Sebastian), the drift macroalgae tended to occupy the shallower depths, particularly near the 

scalloped margins of the east bank and spoil islands of the west bank, and near causeways. 
 

 

 



 

Time Series 
 

To better understand the dynamics of drift macroalgae propagation and transport, a portion of Indian 

River (Pineda South, Eau Gallie, and Crane Creek segments) was surveyed as a time series (TS).  

These segments were surveyed on three separate occasions; just prior to commencing the lagoon-

wide survey (TS1, May 4-7), midway through the survey (TS2, May 29 - June 4), and at the end of 

the survey (TS3, June 28 - July 1).  The elapsed time between surveys was 26.5 days (TS1-2) and 29 

days (TS2-3).  Track-plots of acoustically-predicted drift macroalgae and short SAV are displayed in 

Figure 14.  The segment-by-segment proportions of acoustically-predicted drift macroalgae cover are 

listed in Table 5 and plotted in Figure 15.  The drift macroalgae cover was computed as the 

percentage of acoustic records that classified as DMA in a 10-record block (e.g. if five classified as 

BARE, three as ShortSAV, and two as DMA, the ten-record block would be classified as 20% 

DMA).         

 

Track-plots of acoustically-predicted drift macroalgae show that the boundaries and percent cover of 

individual patches changed very little between TS1 and TS2 (Figure 14a-b).  By the time of TS3 the 

predicted drift macroalgae cover had decreased significantly, but could be observed to occupy the 

same general locations as seen in TS1-2.  Simple averaging of acoustic records revealed that DMA 

cover was steady at 15-16% for TS1&2, followed by a drop to 6.3% at TS3 (Table 5, Figure 15a-c).  

The three individual segments all underwent a similar decline in DMA cover, although in absolute 

numbers the starting DMA cover of Crane Creek and Eau Gallie was roughly twice that of Pineda 

South.  The frequency distributions of acoustically-predicted cover (i.e. 11 bins spanning 0-100% 

cover) revealed a near-complete loss of high-cover records (DMA > 50%) at TS3 (Figure 15c), i.e. 

the decline in acoustically-predicted DMA cover at TS3 was disproportionately driven by the decline 

of high-cover records.  The acoustic predictions of (i) consistent patch boundaries and (ii) decreasing 

number of high-cover records suggest the observed decline in DMA cover was due to a breakdown 

of dense drift macroalgae patches, not due to large-scale movement of the patches themselves.  This 



 

idea is reinforced by the track-plots of ShortSAV (Figure 14).  In several locations where DMA had 

disappeared or appreciably declined during TS3, ShortSAV cover increased in the same location at 

the time of TS3.  For example, the area on the east bank just south of the Melbourne causeway 

changed from 45.4% DMA and 14.6% ShortSAV in TS1 to 12.3% DMA and 46.8% ShortSAV in 

TS3 (see inset, Figure 14c&f).  Recalling that ShortSAV was effectively a catch-all class of short 

and sparse SAV, it is presumed that thick mats of 10cm+ drift macroalgae classified as DMA in 

TS1-2, but classified as ShortSAV in TS3, after the mats had reduced in height and areal cover, 

suggesting the drift macroalgae patches broke-down in situ.  The idea that the canopies of DMA 

patches thinned between TS2 and TS3 is reinforced by trackplots of the 38 kHz depth-pick minus the 

418 kHz depth-pick, for the area in Crane Creek just south of the Melbourne causeway (Figure 16, 

area indicated in Figure 14).  The 418 kHz signal tends to bounce off the top of tall and densely-

packed DMA patches, whereas the 38 kHz signal tends to penetrate any thickness or density of DMA 

to provide a true measure of bottom depth.  While not a reliable stand-alone indicator of DMA, the 

general trend of delta(38-418kHz depth) supports the idea of “thinning” DMA patches.  As the DMA 

canopy decreased in height and density between TS2 and TS3, the acoustic predictions shifted from 

DMA to Short SAV and the delta(38-418kHz depth) simultaneously indicated a decrease in canopy 

height (Figure 16).  This trend of decreasing canopy height can be clearly seen in the frequency 

distributions of records from this area that classified as either ShortSAV or BARE (Figure 17).  It 

could be speculated in this particular case that a significant portion of the DMA that later washed 

ashore came from relatively stationary patches.  At some critical canopy height, continued DMA 

production is exported by wind-shear.  As conditions driving the bloom subside, DMA patches 

reduce in both height and density, but generally do not relocate within the lagoon.   

 

 



 

 

Figure 14.   Time series study (top DMA, bottom ShortSAV).  Track-plot of acoustically-derived percent 

cover of drift macroalgae for the same stretch of Indian River (Pineda South, Eau Gallie, and Crane 

Creek segments), conducted; just prior to the start of the survey (left), midway through the survey 

(middle), and at the conclusion of the survey (right).  Data within the boxes just south of the Melbourne 

causeway are addressed in subsequent figures. 
 

 

 



 

 

Table 5.  2010 time series study.  Frequency distributions of acoustic classifications for three Indian 

River segments (Pineda South, Eau Gallie, and Crane Creek segments) surveyed in a time series.  The 

same tracklines were followed three times; just prior to the start of the survey (TS1), midway through 

the survey (TS2), and at the conclusion of the survey (TS3).  For example, 1.06% of 10-record blocks 

acquired within Crane Creek during TS1 had all ten records classify as DMA.  The contribution of each 

level of DMA cover to the overall decline of DMA cover between TS2 and TS3 is shown under the 

heading „TS2-3 (del% DMA)‟.  For example, the decline in 10-record blocks classifying as 100% DMA 

accounted for 18.73% of the 13.3% decline of acoustically-predicted DMA cover between TS2 and TS3 

in the Crane Creek segment. 

 

 

 

 

Figure 15.   2010 time series study.  Plots of frequency distributions from Table 5.  Note the near-total 

loss of high-cover 10-record blocks at the time of the third time series. 
 

 

 



 

 

Figure 16.  2010 time series study.   Crane Creek segment, just south of Melbourne causeway (area 

indicated in Figure 14).  Many records that had classified as DMA in TS1 and TS2 can be seen to change 

to ShortSAV in TS3, suggesting a “thinning” of the DMA canopy.  This is supported by the diminished 

value of delta(38-418kHz depth); the 38 kHz signal penetrates tall DMA canopies, whereas the higher 

frequency tends to reflect off tall DMA canopies).  

 

 

 
 
Figure 17.  2010 time series study.  DMA patch in Crane Creek segment, just south of Melbourne 

causeway.  Frequency distribution of 38 kHz depth minus 418 kHz depth for records that classified as 

either ShortSAV or DMA.  The differential depth is proposed as a proxy for canopy height, which shows 

a clear decline at TS3. 
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Appendix A1.  Extent of the 2010 acoustic survey, displaying the track-plot of the acoustically-derived 

percent cover of drift macroalgae.  The boundaries of SJRWMD segments are displayed for reference. 

 

 

 

 

 

 

 

 

 



 

 
 

Appendix A2.  2010 Acoustic Survey (Mims to Titusville South).  Kriged 

contour plot of acoustically-predicted percent cover of drift macroalgae.  

The boundaries of SJRWMD segments are displayed for reference. 

 

 

 

 



 

 
 

Appendix A3.  2010 Acoustic Survey (Mims to Titusville South).  Kriged 

contour plot of acoustically-predicted percent cover of short SAV.  The 

boundaries of SJRWMD segments are displayed for reference. 

 

 



 

 
 

Appendix A4.  2010 Acoustic Survey (Port StJohn to Rockledge).  Kriged contour 

plot of acoustically-predicted percent cover of drift macroalgae.  The boundaries of 

SJRWMD segments are displayed for reference. 



 

 
Appendix A5.  2010 Acoustic Survey (Port StJohn to Rockledge).  Kriged contour 

plot of acoustically-predicted percent cover of short SAV.  The boundaries of 

SJRWMD segments are displayed for reference. 

 

 

 

 

 



 

 
 

Appendix A6.  2010 Acoustic Survey (Rockledge to EauGallie).  Kriged contour plot 

of acoustically-predicted percent cover of drift macroalgae.  The boundaries of 

SJRWMD segments are displayed for reference. 

 

 

 

 



 

 
 

Appendix A7.  2010 Acoustic Survey (Rockledge to EauGallie).  Kriged contour plot 

of acoustically-predicted percent cover of short SAV.  The boundaries of SJRWMD 

segments are displayed for reference. 

 

 

 

 



 

 
 

Appendix A8.  2010 Acoustic Survey (Crane Creek to Sebastian).  Kriged contour 

plot of acoustically-predicted percent cover of drift macroalgae.  The boundaries of 

SJRWMD segments are displayed for reference. 

 

 

 

 



 

 
 

Appendix A9.  2010 Acoustic Survey (Crane Creek to Sebastian).  Kriged contour 

plot of acoustically-predicted percent cover of short SAV.  The boundaries of 

SJRWMD segments are displayed for reference. 


