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Introduction

1. Introduction

1.1 BACKGROUND

The Central Springs Model (CSM) groundwater flow model was developed through a collaboration between the St.
Johns River Water Management District (SJRWMD) and the Southwest Florida Water Management District
(SWFWMD). The model was designed to quantify the effects of current and future groundwater withdrawals on
aquifer water levels, river baseflows, and spring discharges and provide a modeling tool to support water supply
planning, evaluation of minimum flows and levels (MFLs), and consumptive/water use (CUP/WUP) permitting
across north-central Florida. The CSM domain includes all of Marion, Volusia, Lake, Seminole, Sumter, Citrus,
Hernando, and Pasco counties and parts of Alachua, Bradford, Clay, Putnam, Flagler, Brevard, Orange, Osceola,
Polk, Hillsborough, Pinellas, and Levy counties (Figure 1-1).

Alachua Putnam

Flagler
Levy
SRWMD ATLANTIC
Marion OCEAN
SIRWMD
Volusia
Citrus
SWFWMD Lake
GULF OF Seminiol
AMERICA Sumter caneke Brevard

Hernando

Orange
SFWMD
L —

Osceola

Pasco

Polk

Hillsborough

" |
Pinellast

Central Springs Model Domain i
[ Model boundary A
[ ] County boundary 6 i B
[] water Management District boundary Mikes

Figure 1-1. Central Springs Model domain.

The CSM is a fully three-dimensional groundwater flow model developed using the MODFLOW-NWT (Niswonger
et al. 2011) computer code. The CSM is horizontally discretized into a uniform grid with a cell size of 2,500 ft by
2,500 ft and consists of 275 rows and 332 columns. The model is vertically discretized into seven hydrostratigraphic
layers, with each layer representing hydrostratigraphic units of similar hydraulic properties. Figure 1-2 provides a
visual representation and description of the model layers. The CSM includes a steady-state model representing
average hydrologic conditions from 2005 to 2018 and a transient model representing 2005 annual conditions
followed by 2006 to 2018 monthly conditions.
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Introduction

In 2023, the CSM was reviewed by independent modeling experts (peer reviewers) and interested stakeholders with
suggested updates incorporated as appropriate. The model files, model report and resolution documents were
finalized in the model version referred to as CSM version 1.0 (CSM v1.0).

I
Model Layer SWFWMD [ SJIRWMD
1
I
undifferentiated I rficial if
1 Surficial Aquifer System
sands I
|
| .
2 thin layer UFA [ Intermediate
= limestone } Confining Unit
[Tl
= : - .
3 g suwannee Limestone : Suwannee Limestone*/
= Ocala Limestone I Ocala Limestone
b= |
H Ocala Limestone | Ocala Limestone
4 e I
o Avon Park 1 Avon Park Formation (upper)
5 & Formation |
o (upper) | ) . )
op | Middle Confining Unit I
|
|
6 Avon Park Formation |
(middle) |
I Lower
Floridan
7 -
Aquifer |

Figure 1-2. Visual representation and description of layers in the Central Springs Model
*Where present

1.2 OBJECTIVES

Following the completion of the CSM v1.0, the modeling team determined that additional model refinement was
needed to address specific technical review comments, make the model a more suitable tool for regulatory decisions,
and improve the model performance in the areas where minimum flows and levels (MFL) water bodies are located.
To address these objectives and facilitate the recalibration effort, the modeling team delineated a critical area where
the original calibration could be improved. The recalibration area, designated as “CSM v1.1 Recalibration Focus
Area” in Figure 1-3, was delineated using the U.S. Geological Survey (USGS) May/June 2010 (Upper Floridan
Aquifer) UFA potentiometric surface as a general guide.

As a result of more thorough review of the data in these areas, the team identified refinements to the following:
Groundwater level targets

River boundary conditions

Drain boundary conditions

Historical water use data and well layering

The recalibration effort was conducted only in the focus area with a goal to improve the model’s ability to better
match observed water levels and spring flows. In addition to the recalibration performed within the focus region,
hydraulic conductivity values in layer 3 through layer 7 in the Northern Sumter County region were modified.

Central Springs Model vi.1 2
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Information from the expanded Northern District Model (NDM) and available Lower Floridan Aquifer (LFA)
aquifer performance test (APT) data was incorporated. The area modified for this purpose is shown in Figure 1-4
and documented in Appendix A. This report describes the model updates, recalibration approach, and results of the
recalibration effort. The original and recalibrated model are referred to as CSM v1.0 and CSM vl1.1, respectively, in
this document.

ATLANTIC
OCEAN

GULF OF
AMERICA

Central Springs Model
Recalibration Focus Area N

—— USGS May-June 2010 UFA Potentiometric Surface  [__] Model boundary =~ =
[_] cSM V1.1 Recalibration Focus Area County boundary " e—

‘./

Figure 1-3. Central Springs Model recalibration focus area
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Citrus

Brevard
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Orange

Osceola

Hillsborough
Pinellas

Central Springs Model

Area of Refinement (Northern Sumter County) }N\
[ Refinement Area I Model boundary e w
[] cSM V1.1 Recalibration Focus Area County boundary T

Figure 1-4. The Northern Sumter County refinement area updated in CSM v1.1. See Appendix A for additional

information.
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2. Model Updates

Updates to the CSM were generally limited to the focus area shown in Figure 1-3, and included modification of
historical water use, groundwater level targets, drain boundaries and river boundaries. Changes to the model outside
of the focus area included updates to layers 3 through 6 horizontal (Kh) and vertical (Kv) hydraulic conductivity
values in the Northern Sumter County area of refinement shown in Figure 1-4 and described in Appendix A.

2.1 HISTORICAL WATER USE

A review of groundwater withdrawals in the CSM v1.0 revealed that consumptive/water use permits (CUPs/WUPs)
associated with The Villages production wells in SJRWMD (CUPs 50279 and 50280) and SWFWMD (WUPs 3206,
12239, 20687, 11404, and 11624) required layer assignment modifications in the MODFLOW well package. Model
layers in the well package were adjusted for these permits as described in Table 2-1. Additionally, it was discovered
during review that approximately 4 million gallons per day of groundwater withdrawal at Wekiva Falls Resort
Spring (CUP 2742) associated with commercial water use was erroneously included in the model well package.
Wekiva Falls Resort Spring is a free flowing well that was simulated using a MODFLOW drain boundary condition
in the model, therefore accounting for the natural discharge of groundwater at this location during the calibration
period. To rectify this, the groundwater withdrawal associated with CUP well SJ 2742 19795 was removed from
the well package.

Table 2-1. Summary of permitted well model layer assignment modifications of The Villages production wells.

District Permit Station ID CSM v1.0 Layer CSM vl.1 Layer
SIR 50279 SJ 50279 454722 3to4 4
SIR 50279 SJ 50279 922 3to4 4
SIR 50279 SJ 50279 923 3to4 4
SIR 50279 SJ 50279 924 3to4 4
SIR 50279 SJ 50279 925 6 4,6
SIR 50279 SJ 50279 926 3to4 4
SIR 50279 SJ 50279 927 3to4 4
SIR 50279 SJ 50279 928 3to4 4
SIR 50280 SJ 50280 23222 3to4 4
SIR 50280 SJ 50280 942 3to4 4
SIR 50280 SJ 50280 943 3to4 4
SWF 3206 SW0032060110025 3to4 6
SWF 3206 SW0032060120025 3to4 6
SWF 3206 SW0032060130025 3to4 6
SWF 3206 SW0032060140025 3to4 6
SWF 12339 SW0122390020001 4 6
SWF 12339 SW0122390020002 3to4 6
SWF 12339 SW0122390020003 3to4 6
SWF 12339 SW0122390020006 3to4 6
SWF 12339 SW0122390020013 3to4 6
SWF 20687 SW0206870020025 3to4 6
SWF 3206 SW0032060120008 4 4,6
SWF 3206 SW0032060140008 4 4,6
SWF 3206 SW0032060050008 4 4,6
SWF 3206 SW0032060060008 4 4,6
SWF 3206 SW0032060090008 4 4,6
SWF 3206 SW0032060110008 4 4,6
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Additional review of model layer assignments for all SIRWMD permitted wells in the focus region was performed
as a part of this model recalibration effort. For this review, hydrogeologic data, including well construction
information, layer thickness, UFA transmissivity, and degree of confinement were considered in evaluating layer
assignments used in the CSM v1.0. As a result of this effort, layer modifications were performed for 7,206 stations
within the focus area. Approximately 99% (7,164) of the modified station withdrawals were sourced in the UFA and
retained the same aquifer designation but shifted pumping to a single layer (model layer 3 or 4) instead of applying
the withdrawal to both model layers that comprise the UFA. The remaining stations (42) shifted aquifer designation
to the UFA (model layer 3 or 4), LFA (model layer 6), or split pumping across the UFA and LFA.

2.2 GROUNDWATER LEVEL TARGETS

Groundwater level targets in the focus area were reviewed for location accuracy, model layer assignment, and
observation values. For this recalibration effort, there was a primary focus on improving simulation of groundwater
levels in the surficial aquifer within the focus area, particularly those with an average residual, expressed as the
simulated value minus observed value, greater than £ 5 feet in the CSM v1.0 transient calibration (Figure 2-1).

Alachua Putnam

Flagler
° - g \
ATLANTIC
® OCEAN
Magion \\
. ’.Vo sia \
® \
e

SN &\

N\
\
\\
Lake > _\vj\7
GULF OF Seminole . \\
AMERICA Sumter orPe @ , | Brevard
Hernando

@ orange

Pasco

,— Polk

|
Osceola
=

‘Hillsborough,o"

Pinelﬁs
Central Springs Model v1.0
Layer 1 Average Transient Head Residuals Above 5 Feet N
D CSM v1.1 Recalibration Focus Area A
[] Model boundary "—?::S—m
\:] County boundary

Figure 2-1. CSM v1.0 2005 to 2018 average transient head residuals greater than 5 feet in layer 1. Red circles
indicate the model is underestimating the observed head by more than 5 feet. Blue circles indicate the model is
overestimating the observed head by more than 5 feet.

A total of 13 wells shown in Figure 2-1 are adjacent to surface water features represented by river or drain boundary
conditions in the model. Many of these wells showed a high degree of correlation between the observed stage and
nearby groundwater level. In these cases, grid cell locations were moved to adjacent cells in the MODFLOW Head
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Observation (HOB) package to correlate with the location of the head dependent boundary condition cell used to
represent the surface water feature in the model.

Well construction information was also reviewed to verify accuracy of model layer assignment for groundwater
level targets in the focus area. Monitoring well OR0547 is located near Wekiwa Springs. A review of the CSM v1.0
HOB package indicated that OR0547 was assigned to model layer 4, and the CSM v1.0 transient calibration results
show that this well is undersimulated by greater than 10 feet. Well construction information indicates that OR0547
is open to the Middle Confining Unit (MCU) I (model layer 5). Due to uncertainty regarding MCU I and MCU II
spatial extent and limited groundwater level monitoring data in the MCU I, OR0547 was zero weighted for the CSM
v1.1 recalibration. Additionally, monitoring well OR0893 near Prevatt Lake was determined to be open to the upper
part of the UFA (model layer 3), instead of model layer 4 as assigned in the CSM v1.0 HOB package.

Two groundwater level targets, P-4045 and M-0628, were added to the steady-state and transient calibration for this
recalibration effort. Well P-4045 is a surficial aquifer monitoring well located in the upland area east of Little Lake
George. In review of the CSM v1.0 HOB package, surficial well P-4046 is in the same grid cell as P-4045 and was
utilized in the CSM v1.0 calibration. In review of the observed data available at these wells, it was determined that
observed groundwater levels at P-4045 more accurately represent average conditions in the area represented in the
model grid cell. Therefore, well P-4046 was inactivated in the model calibration and well P-4045 was included. It
was also determined during review of the MODFLOW HOB package that LFA well M-0628, located in Marion
County, was not utilized in the CSM v1.0 steady-state calibration since regular monitoring at this well was not
initiated until 2020. Due to the limited amount of data available in the LFA in the focus region and the proximity of
this well to Silver Springs, it was decided to include this well in the steady-state calibration. Nearby UFA well M-
0419 had groundwater level measurements available through the transient simulation period (2005 to 2018) and
linear correlation with LFA groundwater levels at M-0628 show a strong relationship (R? = 0.93, Figure 2-2). The
linear regression model in Figure 2-2 was used to estimate LFA levels at M-0628 (response variable) using UFA
levels at M-0419 (predictor variable) for the period of 2005 to 2018.

518

51.7
y=1.6085x- 19.861
516 R%=0.9321

515 o
51.4 e
51.3
51.2 .
511 |

51 e

LFA Groundwater Level at M-0628, ft NAVD88

50.9

50.8

43.8 43.9 44 44.1 44.2 44.3 44.4 44.5 44.6
UFA Groundwater Level at M-0419, ft NAVDE8

Figure 2-2. Linear regression of LFA level at well M-0628 (response variable) and UFA level at well M-0419
(predictor variable)
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A summary of the groundwater level target modifications described above is presented in Table 2-2.

Table 2-2. Summary of groundwater level target modifications and justifications.

Well ID | Layer Modification Justification

. . High degree of correlation with stage at Lake Daugharty.
V-0813 ! Moved to adjacent river cell (103, 221) Upgdatedgobserved head values basegd on measuredgzlata.y
V-0808 3 Moved to adjacent river cell (103, 221) | High degree of correlation with stage at Lake Daugharty
V-0541 1 Moved to adjacent river cell (73, 196) | High degree of correlation with stage at Cowarts Lake
V-0528 1 Moved to adjacent drain cell (82, 197) | Average model top elevation more appropriate in grid cell
V-0531 3 Moved to adjacent drain cell (82, 197) | Same location as V-0528 (nested well)
V-0530 6 Moved to adjacent drain cell (82, 197) | Same location as V-0528 (nested well)
S-0716 1 Moved to adjacent river cell (146, 208) | High degree of correlation with stage at Sylvan Lake
S-0718 3 Moved to adjacent river cell (146, 208) | High degree of correlation with stage at Sylvan Lake
S-1023 1 Moved to adjacent river cell (159, 242) | Reduce influence of river stage
S-0001 3 Moved to adjacent river cell (159, 242) | Reduce influence of river stage
OR0894 1 Moved to adjacent river cell (159, 194) | High degree of correlation with stage at Prevatt Lake
OR0893 3 gzz;:cte‘rnotnrlii?rlecre‘ltl t(ol ?gjelr 934)M0ved Well is in upper part of UFA. Same location as OR0894.

Moved to layer 5. Zero weighted well | Well in located in MCU 1. Model lacks necessary layer
ORO0547 5 . o . o . . .
in calibration discretization to simulate water levels at this location.
P-0197 1 Moved to adjacent drain cell (31, 184) | Reduce influence of river stage
P-0164 1 Moved to adjacent drain cell (31, 184) | Reduce influence of river stage
P-4045 1 Activated well in calibration Located in well cluster next to P-4046
P-4046 1 Zero weighted well in calibration Located in well cluster next to P-4045
M-0628 6 Activated well in calibration Average water lev‘el estirpated based on linear regression
for model calibration period

2.3 DRAIN BOUNDARY CONDITIONS

The model drain boundary conditions utilized to represent small, intermittent streams, wetlands, and small lakes
within the focus area were reviewed for this recalibration effort. Figure 2-3 shows the CSM v1.0 drain cells
distributed in layer 1 as well as the location of ridge areas in the focus region. In the focus region, the principal
ridges include the Crescent City and DeLand ridges in western Volusia County. These features are characterized by
sandy deposits with high topographic elevation, karst development, and an absence of well-developed surface
drainage (Williams 1997). Drain boundary condition cells located in layer 1 within the ridge areas identified in
Figure 2-3 were reviewed and a majority were removed from the model. Additional drain cells outside of the ridge
areas were reviewed and removed if they were deemed to not be conceptually appropriate based on review of
surface water drainage and topographic maps of the region. The total number of drain cells in the model was
reduced from 22,046 to 20,430. Figure 2-3 includes the revised CSM v1.1 drain cell distribution in layer 1.
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Figure 2-3. Distribution of drain cells in layer 1 in CSM v1.0 (left) and CSM v1.1 (right)
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2.4 RIVER BOUNDARY CONDITIONS

River stages assigned to the grid cells representing MFL lakes within the focus area were reviewed for accuracy.

River stage at Lake Dias, Lake Daugharty, Lake Monroe, Prevatt Lake, Sylvan Lake, Silver Lake (Marion County),

and Silver Lake (Lake County) were updated to be consistent with observed or estimated stage data. In addition to
modifications to existing river cells in the model, the hydrography of the focus area was reviewed to determine if
additional surface water features lacked representation in CSM v1.0. Table 2-3 lists 23 river boundary condition

cells that were added within the focus region to represent surface features, primarily small lakes. Stage information
for these features was estimated based on topographic elevation where data was not available. The added river cells
are displayed spatially in Figure 2-4.

Table 2-3. Added river boundary condition grid cell location, stage and associated hydrologic feature name.

Assigned Stage

Layer Row Column (2005 to 2018 average Waterbody Name
feet, NAVDSS)

1 133 227 75 Clearwater Lake
1 126 219 10 Mill Lake
1 116 218 20 No name available
1 116 219 20 No name available
1 133 220 30 Glen Abbey Pond
1 73 196 35 Cowarts Lake
1 132 228 40 McGarity Lake
1 132 227 60 Fieldstone Lake
1 133 228 40 Vivian Lake
1 31 184 20 Long Swamp
1 133 233 22.85 Theresa Lake
1 129 233 24.77 Angela Lake
1 130 233 24.77 Angela Lake
1 130 237 33.54 Deep Creek
1 131 237 33.61 Deep Creek
1 137 227 50 Thormpson Pond
1 136 225 60 Outlook Lake
1 110 220 65 Lake Lindley
1 136 227 65 Broken Arrow Lake
1 135 227 78.58 Randolph Lake
1 135 226 85 Castle Lake
1 116 225 60 No name available
1 133 235 25 No name available

Central Springs Model vi.1
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Figure 2-4. CSM v1.1 river cell distribution. Added or converted river boundary cells are shown in purple.
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3. Model Recalibration

3.1 CALIBRATION APPROACH

After the model was updated, model parameters were recalibrated to improve the model performance within the
focus area. No changes were made to the parameters outside of the recalibration focus area (Figure 1-3) or the
Sumter County refinement area (Figure 1-4) as part of recalibration. Model testing during recalibration indicated
that modifications to model parameters within the focus area resulted in minimal changes to simulated groundwater
levels and flows outside of the focus area.

Automated parameter estimation software (PEST) (Doherty 2015) was used for recalibration. The following
parameters were adjusted using PEST:

Hydraulic conductivity
Spring conductance
River conductance
Drain conductance

Horizontal hydraulic conductivity (Kh) values for layers 1, 3, 4, 6, and 7 and vertical hydraulic conductivity (Kv)
values for layers 2 and 5 were estimated directly at pilot point locations in the PEST calibration process. Pilot points
are user specified points at which the values of parameters are adjusted during the PEST calibration process. CSM
v1.0 utilized a uniform approach in the distribution of pilot points in each layer, with pilot points located uniformly
with 10 grid cells (25,000 ft) between each point. A review of the hydrogeology within the focus region was
completed to assess the reasonableness of the pilot point distribution for model calibration of this area. A literature
review indicated that the hydrogeology of the area is heterogeneous, with recharge primarily concentrated in ridge
areas and localized regions existing where the Intermediate Confining Unit (ICU) is thin or absent (Williams 1997,
Tibballs 1990). Due to the heterogeneity of the system prevalent in the focus area, the pilot point locations were
revised for model layers 1 (Surficial Aquifer System; SAS) through 5 (MCU I) to produce a denser network of
points for parameter estimation. Additionally, pilot points were added to the Northern Sumter County Refinement
Area (Figure 1-4) for model layers 3 (UFA) through 7 (LFA) to ensure a smooth hydraulic conductivity field that
reasonably represented the local hydrogeology, as described in Appendix A. The revised pilot point distribution
maps for layers 1 through 7 are included in Appendix B. Vertical anisotropy ratios remained the same as CSM v1.0.

Initial parameter values were obtained from the CSM v1.0 model. The upper and lower bounds of the pilot points,
utilized for adjustment of hydraulic conductivities, were set so that the UFA and LFA transmissivities and ICU and
MCU leakance values were maintained within the values consistent with the known hydrogeology of the area. All
observations in the model were utilized for PEST calibration. Target weights assigned for the CSM v1.0 steady-state
calibration were reviewed and revised, if needed, based on review of data. Spring flow target weights were reduced
by an order of magnitude in PEST to enable greater emphasis on groundwater levels within the focus region. The
following observations were employed for calibration:

Groundwater levels for all layers

Groundwater level differences between UFA and SAS and between LFA and UFA
Spring flows

Baseflows (qualitative)

Vertical lake leakages (qualitative)
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The model was recalibrated using a four-step approach as follows. The process is illustrated in Figure 3-1.

1. PEST optimization was first conducted on a steady-state model representing the average 2005-2018
condition.

2. Once a steady-state calibration was satisfactory, a transient model was run with the updated hydraulic

properties.

Storage coefficients were adjusted as needed.

4. Steps 1 through 3 were repeated until a satisfactory transient calibration was achieved.

[O8)

Step 1 Step 2
Calibration of the Calibration of the
Long-Term 2005 to Feedback for additional 2005 to 2018

2018 Average iterations, if necessary Transient Model
Steady-State Model

Hydraulic properties

Step 3
Hydraulic Storage
Properties Properties

Figure 3-1. Central Springs Model calibration approach (Sun et al. 2024)

The transient calibration criteria set for CSM v1.0 were used to evaluate model performance. The recalibration was
performed to ensure that the modeled groundwater levels and spring flows matched observed values closely within
the focus area. Baseflows were reviewed qualitatively to ensure that the CSM v1.1 performed in a similar manner as
CSM v1.0. Additional information on how baseflows were estimated and qualitatively assessed can be viewed in
Chapter 6 of the CSM v1.0 model report (Sun et al. 2024). Simulated groundwater level contours were compared
with potentiometric surface maps to further assess the model’s ability to adequately match the configuration of the
UFA flow field and groundwater flow direction. Aquifer performance test (APT) and literature data were utilized
qualitatively to evaluate the reasonableness of the aquifer parameters.

No adjustments were made to recharge, maximum saturated evapotranspiration (ET) rates, general head boundary
(GHB) conductance values, or the Kv multiplier in layer 2 underneath lakes in the CSM v1.0 model. The exception
to this is Lake Weir, where the layer 2 Kv values underneath the lake area were manually adjusted during calibration
to produce simulated lake leakage rates closer to the estimated value from water budget studies (Deevey 1988).
After the recalibration was finalized, model-wide calibration statistics were also reviewed to ensure there was no
degradation in model performance outside of the focus area.

3.2 TRANSIENT MODEL CALIBRATION RESULTS

Monthly average aquifer water levels and springflows, developed for the calibration of CSM v1.0, were utilized in
this recalibration effort as calibration targets to assess model calibration metrics. These included average monthly
water levels from observation wells of the SAS (layer 1), UFA (layers 3—4), and the LFA (layers 6—7). Additionally,
vertical head differences (VHDs) between the SAS and UFA and between the UFA and LFA were evaluated
quantitatively. Model-simulated river baseflows and lake leakages were compared with estimated values to ensure
that the simulated fluxes were within a reasonable range. Flooded and dry cells were also examined during model
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calibration. Additional information regarding the observation data utilized to calibrate the transient model can be
found in Chapter 6 of the CSM v1.0 documentation (Sun et al. 2024).

The CSM v1.0 calibration criteria were also used in this recalibration effort and included: 1) a mean error of less
than + 0.5 feet for SAS, UFA, and LFA heads from all wells, 2) 50% of the mean absolute simulated head residuals
for all wells in the SAS, UFA, and LFA had to be within 2.5 feet of observed, and 3) 80% of the mean absolute
simulated head residuals for all wells in the SAS, UFA, and LFA were required to be within 5 feet of observed
values. Mean simulated spring discharge had to be within 5% of the estimated/measured flows for first magnitude
springs and within 10% for second magnitude springs with reliable observed data.

Model calibration statistics for observation wells are presented in this section for two geographic areas: 1) CSM
domain and 2) the recalibration focus area shown in Figure 1-3. For assessing improvement in model prediction
performance, model statistics were compared to CSM v1.0.

3.2.1 Groundwater Levels

Transient groundwater level targets were analyzed and are presented in the following section. Transient model
calibration statistics were computed for the target wells in the SAS, UFA, and LFA within the focus area (Table 3-1)
and CSM domain (Table 3-2). Calculated statistics including ME, MAE, and R? are presented for each major aquifer.
The spatial distributions of average head residual, expressed as the simulated minus observed water level, for the
target wells in the SAS, UFA, and LFA in the focus area are shown in Figure 3-2 through Figure 3-4, respectively.
The mean simulated versus observed water levels for the SAS, UFA, and LFA targets in the focus area are compared
between version 1.0 and 1.1 of the models in Figure 3-5 through Figure 3-7. Figure 3-8 through Figure 3-13 show
individual simulated versus observed water level hydrographs at selected wells within the focus area. The complete
set of simulated and observed hydrographs for calibration target wells is provided in Appendix C (SAS), Appendix D
(UFA), and Appendix E (LFA). The spatial distribution of transient average simulated versus observed vertical head
differences in the recalibration focus area are compared between version 1.0 and 1.1 of the models in Figure 3-14 and
Figure 3-15 across the ICU and MCU I, respectively. Scatterplots comparing the simulated to observed vertical head
differences across the ICU and MCU I are compared between version 1.0 and 1.1 in Figure 3-16 and Figure 3-17,
respectively. The distribution of 2005 to 2018 average flooded cells in layer 1 (defined as the head in layer 1 greater
than 5 feet above land surface) and dry cells in layer 1 are compared in Figure 3-18 and Figure 3-19, respectively.
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Table 3-1. Transient model calibration statistics of target monitoring wells in the focus area.

Focus Area — V1.0

Focus Area — V1.1

Statistic Target
SAS | UFA | LFA SAS UFA | LFA
Mean error <+05ft 1.3 0.2 0.1 0.6 0.2 0.4
RSR <0.5 (UFALLEA) 0.1 0.1 0.2 0.1 0.1 0.1
<0.7 (SAS)

Mean absolute error (MAE) - 3.5 1.9 1.6 2.1 1.4 1.4
PBIAS = i<li0 igfg/fél;A) 32% | 0.6% | 0.3% 1.5% | 0.6% 1.1%
RMSE - 5.1 2.3 2.0 2.2 1.4 1.7

Minimum Residual - -12.1 | -6.7 -3.5 -6.1 -4.4 -2.7
Maximum Residual - 24.5 13.1 6.4 5.6 3.6 5.8
Number of wells - 159 168 20 159 168 20
% MAE < 2.5 ft 50% 56% | 80% 85% 73% 91% 90%
% MAE <5.0 ft 80% 80% | 96% 95% 97% 100% | 95%
RE>04 > 0.85 (UFA/LFA) 55% | 89% 100% | 56% 88% 100%
> (.75 (SAS)

determination.

Note: Mean error expressed as simulated minus observed.
SAS = Surficial Aquifer System; UFA = Upper Floridan Aquifer ; LFA = Lower Floridan Aquifer; RSR = ratio of root
mean square error and standard deviation; PBIAS = Percent bias; RMSE = root mean square error; R? = coefficient of

Table 3-2. Transient model calibration statistics of target monitoring wells in the model domain.

Model Domain — V1.0

Model Domain — V1.1

Statistic Target
SAS | UFA LFA SAS UFA LFA
Mean error <+0.5ft 0.5 0.3 -0.3 0.2 0.2 -0.2
< 0.5 (UFA/LFA)
RSR 0.1 0.1 0.1 0.1 0.1 0.1
<0.7 (SAS)
Mean absolute error (MAE) - 2.6 1.8 1.7 2.0 1.7 1.6
<=+ 10 (UFA/LFA)

PBIAS 0.9% | 0.7% | -0.6% 0.4% 0.6% | -0.4%

<+ 15 (SAS)

RMSE - 3.6 2.2 2.2 2.2 1.9 2.1
Minimum Residual - -12.1 | -124 -8.4 -10.4 -11.0 -8.6
Maximum Residual - 24.5 13.1 6.4 8.9 9.7 5.8

Number of wells - 403 601 38 403 600 38
% MAE <25 ft 50% 72% | 81% 89% 78% 85% 89%
% MAE <5.0 ft 80% 91% | 97% 95% 98% 97% 95%
> 0.85 (UFA/LFA)
R2>0.4 619 889 959 619 889 929
> (.75 (SAS) o o o o o o

determination.

Note: Mean error expressed as simulated minus observed.
SAS = Surficial Aquifer System; UFA = Upper Floridan Aquifer ; LFA = Lower Floridan Aquifer; RSR = ratio of root
mean square error and standard deviation; PBIAS = Percent bias; RMSE = root mean square error; R? = coefficient of
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Figure 3-2. Spatial distribution of average transient head residuals in model layer 1 in CSM v1.0 (left) and CSM
v1.1 (right). Residual is calculated as the simulated value minus observed value.
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Figure 3-3. Spatial distribution of average transient head residuals in model layer 3 and 4 in CSM v1.0 (left) and
CSM v1.1 (right). Residual is calculated as the simulated value minus observed value.
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Figure 3-4. Spatial distribution of average transient head residuals in model layer 6 in CSM v1.0 (left) and CSM

vl1.1 (right). Residual is calculated as the simulated value minus observed value.
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Figure 3-5. Mean simulated versus observed water levels for the SAS within the focus area in the CSM transient
model for v1.0 (left) and v1.1 (right). (Note: Solid line is 1:1 relation between simulated and observed water levels;
dashed line is linear regression of simulated versus observed water levels from target wells).
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Figure 3-6. Mean simulated versus observed water levels for the UFA within the focus area in the CSM transient
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Figure 3-7. Mean simulated versus observed water levels for the LFA within the focus area in the CSM transient
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Figure 3-8. Comparison of model simulated hydrographs to monthly observed groundwater levels at surficial aquifer
well V-0814 in layer 1. CSM v1.0 (top) is compared to CSM v1.1 (bottom).
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Figure 3-9. Comparison of model simulated hydrographs to monthly observed groundwater levels at surficial aquifer
well V-1148 in layer 1. CSM v1.0 (top) is compared to CSM v1.1 (bottom).
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Figure 3-10. Comparison of model simulated hydrographs to monthly observed groundwater levels at surficial
aquifer well V-1151 in layer 1. CSM v1.0 (top) is compared to CSM v1.1 (bottom).
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Figure 3-11. Comparison of model simulated hydrographs to monthly observed groundwater levels at surficial
aquifer well V-0813 in layer 1. CSM v1.0 (top) is compared to CSM v1.1 (bottom).
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Figure 3-12. Comparison of model simulated hydrographs to monthly observed groundwater levels at Upper
Floridan Aquifer well V-1030 in layer 3. CSM v1.0 (top) is compared to CSM v1.1 (bottom).
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Figure 3-13. Comparison of model simulated hydrographs to monthly observed groundwater levels at Lower
Floridan Aquifer well V-0780 in layer 6. CSM v1.0 (top) is compared to CSM v1.1 (bottom).
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Figure 3-14. Comparison of simulated 2005 to 2018 average vertical head differences across the Intermediate

Confining Unit (ICU) with observed values at well pairs
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Figure 3-15. Comparison of simulated 2005 to 2018 average vertical head differences across the Middle Confining
Unit I (MCU I) with observed values at well pairs
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CSM V1.0: Focus Area SAS to UFA Vertical Head Difference Targets
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Figure 3-16. Mean simulated versus observed vertical head difference between the SAS and UFA at targets within
the recalibration focus area for CSM v1.0 (top) and CSM v1.1 (bottom). (Note: Solid line is 1:1 relation between
simulated and observed head differences; dashed line is linear regression of simulated versus observed head

differences).
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CSM V1.0: Focus Area UFA to LFA Vertical Head Difference Targets
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Figure 3-17. Mean simulated versus observed vertical head difference between the UFA and LFA at targets within
the recalibration focus area for CSM v1.0 (top) and CSM v1.1 (bottom). (Note: Solid line is 1:1 relation between
simulated and observed head differences.
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Figure 3-18. Location of flooded cells in layer 1. Flooded cells were identified by subtracting the average 2005 to

2018 simulated head in layer 1 from the top elevation of layer 1.

Central Springs Model vi.1

30



Model Recalibration

CSM v1.0

CSM v1.1

Putnam

Seminole

Central Springs Model

Dry Cell Locations (Average 2005 to 2018) N
] csM V1.1 Recalibration Focus Area [} Ridge areas A
1 Model boundary [ Dry Cell 0 10 20
|| County boundary Miles

*A dry cell occurs when the simulated layer 1 head is below the bottom elevation of layer 1.

Figure 3-19. Location of dry cells in layer 1. Dry cells were identified by subtracting the average 2005 to 2018
simulated head in layer 1 from the bottom elevation of layer 1. Physiographic ridge areas are also identified within
the focus area.

3.2.2 Spring Discharges

First magnitude (greater than 100 cubic feet per second [cfs]) and second magnitude (10 to 100 cfs) springs in the
recalibration focus area (Figure 3-20) with flow measurement data during the calibration period served as calibration
targets for the transient model. Comparison of simulated and observed spring fluxes averaged through the transient
simulation period are provided in Table 3-3 for the 17 target springs within the focus area. Comparisons between the
simulated and observed hydrographs for selected first and second magnitude springs in the focus area are shown on
Figure 3-21 through Figure 3-26. A complete set of simulated and observed hydrographs for transient target springs
in the model domain is provided in Appendix F. For the transient simulation, the cumulative average discharge of the
17 calibration target springs within the focus area was 1,294 cfs, which is less than 0.3% higher than the total estimated
flow of 1,259 cfs.
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Figure 3-20. Location of first and second magnitude springs within the recalibration focus area
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Table 3-3. Comparison of average 2005 to 2018 simulated and observed flux at target springs in the focus area.

Simulated Flux? (cfs) % Difference
Name Observed Flux! (cfs)
CSM v1.0 CSMyvl.l | CSMvl1.0 | CSMvl.1
Silver Springs 542.6 531.8 530.6 -2.0% -2.2%
Blue Spring (Orange City) 140.6 142.3 141.5 1.2% 0.7%
Alexander Springs 97.1 99.6 99.3 2.6% 2.3%
Silver Glen Springs 85.7 87.4 89.5 2.0% 4.4%
Salt Springs 76.4 78.5 79.3 2.8% 3.8%
Croaker Hole Spring 69.3 69.9 70.6 0.8% 1.8%
Ponce De Leon Springs 22.7 22.9 23.1 0.9% 1.8%
Blue Spring (Marion) 20.7 21.8 219 5.5% 6.0%
Sweetwater Springs 12.9 13.3 13.5 2.7% 5.0%
Fern Hammock Springs 11.3 11.7 11.9 3.4% 5.4%
Juniper Springs 11.1 114 11.8 2.8% 6.0%
Gemini Springs 9.6 9.7 10.0 1.4% 3.9%
Rock Springs 55.0 553 55.2 0.5% 0.4%
Sanlando Spring 19.8 20.0 20.2 0.8% 2.1%
Starbuck Spring 11.8 11.8 11.9 0.5% 1.4%
Wekiva Falls Resort Spring? 11.6 10.2 10.3 -11.6% -10.9%
Wekiwa Springs 61.1 61.4 62.0 0.5% 1.6%
! Observed flux is the average of the observed flux for the period of 2005 to 2018.
2 Simulated flux is the average of the simulated flux for stress periods where observations exist.
3 Target represents a free-flowing well and is not a natural spring.
Note: cfs = cubic feet per second
% Difference = (simulated — observed)/observed
Rounding of flows accounts for nominal discrepancies
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Figure 3-21. Comparison of model simulated to observed spring discharge at Alexander Springs. CSM v1.0 (top) is
compared to CSM v1.1 (bottom).
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Figure 3-22. Comparison of model simulated to observed spring discharge at Blue Spring (Orange City). CSM v1.0
(top) is compared to CSM v1.1 (bottom).
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Figure 3-23. Comparison of model simulated to observed spring discharge at Gemini Springs. CSM v1.0 (top) is
compared to CSM v1.1 (bottom).
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Figure 3-24. Comparison of model simulated to observed spring discharge at Ponce De Leon Springs. CSM v1.0
(top) is compared to CSM v1.1 (bottom).
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Figure 3-25. Comparison of model simulated to observed spring discharge at Silver Glen Springs. CSM v1.0 (top) is
compared to CSM v1.1 (bottom).
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Figure 3-26. Comparison of model simulated to observed spring discharge at Silver Springs. CSM v1.0 (top) is
compared to CSM v1.1 (bottom).

3.2.3 River Baseflows

River baseflows were used as qualitative calibration targets in the transient model calibration and were estimated using
techniques from the USGS GW Toolbox (Barlow et al. 2014) and the Perry method (Perry 1995). Additional
documentation on baseflow estimation can be found in Chapter 6 of the CSM v1.0 model report (Sun et al. 2024). The
simulated baseflow was compared to estimated cumulative baseflow and segmental baseflow (or pickup baseflow) at
all gages within the model domain (locations shown in Figure 3-27) in Appendix G and H, respectively. Simulated
cumulative baseflow is compared to the range of estimated baseflow at 16 USGS gages within the recalibration focus
area in Table 3-4. For the calibration period, from 2005 to 2018, the mean simulated total baseflow at the 16 USGS
gauges was 3,473 cfs, while the range of estimated flows varied between 1,894 and 5,639 cfs. This is an increase from
3,236 cfs simulated with the CSM v1.0 transient model. A total of 11 out of 16 USGS gages were within the range of
estimated baseflows by baseflow separation methods, a reduction from 12 out of 16 in the CSM v1.0 model. Selected
hydrographs of simulated versus estimated baseflow discharge at the two major rivers in the focus area (St. Johns
River and Ocklawaha River) are shown on Figure 3-28 through Figure 3-31.
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Figure 3-27. Location of cumulative baseflow gages within the recalibration focus area
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Table 3-4. Comparison of average 2005 to 2018 simulated with minimum and maximum estimated baseflow at

streamflow gages in the focus area.

Simulated Estimated
USGS ID Station Name Watershed B&;z;il)?w B?iﬁg‘z’w
V1.0 | V1.1 | Min | Max

02233500 Econlockhatchee River near Chuluota, FL Upper St. Johns 8.8 155 | 67.2 | 240.0
02234010 St. Johns River at Osceola, FL Upper St. Johns 246 | 2732 | 889 | 456.0
02234344 Howell Creek at State Hwy 434 near Oviedo, FL Upper St. Johns 3.9 49| 163 51.8
02234384 Soldier Creek near Longwood, FL Upper St. Johns 2.5 2.0 1.7 9.7
02234400 Gee Creek near Longwood, FL Upper St. Johns 2.4 33 1.9 12.6
02234440 St. Johns River at State Hwy 415 near Sanford, FL Upper St. Johns 309 | 356.5 104 | 708.0
02234500 St. Johns River near Sanford, FL Upper St. Johns 379 | 388.8 122 | 894.0
02234990 Little Wekiva River near Altamonte Springs, FL Upper St. Johns 22.5 26.1 4.6 24.2
02235000 Wekiva River near Sanford, FL Upper St. Johns 197 | 200.3 175 | 248.0
02235200 Blackwater Creek near Cassia, FL Upper St. Johns 20.4 11.9 | 12.7 43.2
02236000 St. Johns River near De Land, FL Upper St. Johns 832 | 824.0 | 232 | 1342.0
02239000 Ocklawaha River near Ocala, FL Ocklawaha -3.9 33.7 19 101.0
02240000 Ocklawaha River near Conner, FL. Ocklawaha 559 | 615.8 490 | 651.0
02240500 Ocklawaha River at Eureka, FL Ocklawaha 604 | 657.8 538 724.0
02243000 Orange Creek at Orange Springs, FL Ocklawaha 10.5 11.6 | 16.8 55.5
02244333 Haw Creek above Russells Landing near St Johns Park, FL. Lower St. Johns 43 473 4.2 77.6

! Simulated baseflow is the average of the simulated flux for all stress periods.

2 Estimated baseflow represents the minimum and maximum flux estimated from all baseflow estimation methods.

Note: cfs = cubic feet per second
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Figure 3-28. Comparison of model simulated to estimated cumulative baseflow at USGS gage 02236000 (St. Johns
River Near DeLand, FL). CSM v1.0 (top) is compared to CSM v1.1 (bottom).
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Figure 3-29. Comparison of model simulated to estimated cumulative baseflow at USGS gage 02234500 (St. Johns
River Near Sanford, FL). CSM v1.0 (top) is compared to CSM v1.1 (bottom).
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Figure 3-30. Comparison of model simulated to estimated cumulative baseflow at USGS gage 02239000
(Ocklawaha River Near Ocala, FL). CSM v1.0 (top) is compared to CSM v1.1 (bottom).
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Figure 3-31. Comparison of model simulated to estimated cumulative baseflow at USGS gage 02240500
(Ocklawaha River at Eureka, FL). CSM v1.0 (top) is compared to CSM v1.1 (bottom).

3.2.4 Lake Leakage Rates

The spatial distribution of average leakage values for the simulated lakes are shown in Figure 3-32. The only lake in
the focus area with a reported leakage value from water budget studies is Lake Weir, which was estimated to be -
13.5 inches per year, on average, for the period of 1954 to 1986 (Deevey 1988), indicating net outflow from the lake
to the aquifer for this period. The average simulated lake leakage rate at Lake Weir is -17.6 inches per year, an
increase in magnitude from -3.5 inches per year simulated with CSM v1.0. The lake leakage hydrograph at Lake
Weir is compared for both versions of the model in Figure 3-33. A complete set of simulated hydrographs of lake
leakage is provided in Appendix I. Among the 508 lakes simulated in the CSM v1.0, 442 (87%) lakes had average
simulated leakage values within + 20 in/yr.
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Figure 3-32. Transient simulated 2005 to 2018 average lake vertical leakage within the recalibration focus area
(inches per year). Negative values indicate flux from the lake to the aquifer and positive values indicate flux from

the aquifer to the lake.
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Figure 3-33. Simulated hydrograph of vertical lake leakage at Lake Weir, located in Marion County. CSM v1.0 (top)
is compared to CSM v1.1 (bottom).

3.2.5 Water Budget

Simulated water budgets of boundary condition inflow and outflow, inter-layer vertical flux, and storage calculated
from the transient simulation are summarized for each layer in the model domain in Table 3-5 and Table 3-6. The
net flow, calculated as inflow minus outflow, is listed in Table 3-7. Net fluxes for each major component of the
water budget during the calibration period included recharge of 14.2 in/yr, groundwater ET of -5.1 in/yr, net
discharge to river, lake, and wetlands of -2.2 in/yr (summation of -1.3 in/yr of River/Lake and -0.9 in/yr of Drain net
discharge), and spring discharge of -4.1 in/yr. The overall groundwater withdrawal is -1.5 in/yr and groundwater
recharge through drainage wells and RIBs is 0.3 in/yr, resulting in a net groundwater withdrawal of -1.3 in/yr. A
total net storage change of 0.2 in/yr in layer 1 (SAS) and a total of 0.1 in/yr in the remaining model layers occurred
over the model simulation period.
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Table 3-5. Boundary condition influx in the CSM transient model (2005-2018) by layer (inches/year).

Layer CHD GHB Well River Recharge Vertical Storage
in/yr in/yr in/yr in/yr in/yr in/yr in/yr
1 0.0 - 0.1 0.9 14.2 4.5 33
2 0.1 - - - - 5.9 0.5
3 0.1 0.0 0.2 - - 6.0 0.2
4 0.2 0.1 - - - 2.4 0.2
5 0.1 - - - - 23 0.0
6 0.3 0.2 - - - 0.2 0.0
7 0.1 - - - - - 0.0
Total 0.8 0.3 0.3 0.9 14.2 - 4.2

Note: — = not applicable
CHD = constant head boundaries (coastal)

GHB = general head boundaries (non-coastal)
Rounding of fluxes accounts for nominal discrepancies.

Table 3-6. Boundary condition outflux in the CSM transient model (2005-2018) by layer (inches/year).

Layer | CHD | GHB | Well | River | Drain Spring ET Vertical | Storage
in/yr | in/yr | in/yr | in/yr in/yr in/yr in/yr in/yr in/yr

1 -2.0 - 0.0 -2.2 -0.9 - -5.1 -9.6 -3.0

2 0.0 - - - - - - -11.2 -0.4

3 -0.1 -0.3 -0.4 - - - - -10.8 -0.2

4 0.0 -0.3 -0.8 - - -4.1 - -2.4 -0.2

5 0.0 - -0.1 - - - - -2.3 0.0

6 - -0.2 -0.3 - - - - -0.1 0.0

7 - - 0.0 - - - - - 0.0

Total -2.1 -0.8 -1.5 -2.2 -0.9 -4.1 -5.1 - -3.9

Note: — = not applicable

CHD = constant head boundaries (coastal)

ET = evapotranspiration

GHB = general head boundaries (non-coastal)

Rounding of fluxes accounts for nominal discrepancies.

Table 3-7. Boundary condition net flux in the CSM transient model (2005-2018) by layer (inches/year).

Layer | CHD | GHB | Well | River | Drain | Spring | Recharge | ET | Vertical | Storage
in/yr | in/yr | in/yr | in/yr in/yr in/yr in/yr in/yr in/yr in/yr
1 -2.0 - 0.1 -1.3 -0.9 - 14.2 -5.1 -5.2 0.2
2 0.1 - - - - - - - -5.3 0.0
3 0.0 -02 | -0.2 - - - - - -4.9 0.0
4 0.2 -0.3 -0.8 - - -4.1 - - 0.1 0.0
5 0.1 - -0.1 - - - - - 0.1 0.0
6 0.3 -0.1 -0.3 - - - - - 0.1 0.0
7 0.1 - - - - - - - - 0.0
Total -1.2 -0.5 -1.3 -1.3 -0.9 -4.1 14.2 -5.1 - 0.3

Note: — = not applicable
CHD = constant head boundaries (coastal)
ET = evapotranspiration
GHB = general head boundaries (non-coastal)
Rounding of fluxes accounts for nominal discrepancies.
Positive value = influx; negative value = outflux
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3.2.5 Aquifer and Confining Unit Properties

Hydraulic properties within the CSM include hydraulic conductivity (both vertical and horizontal) and specific
storage properties. During the calibration process, the initial estimates of hydraulic conductivity were adjusted
within reasonable limits to improve the agreement between simulated and observed conditions while maintaining
parameterization consistent with the conceptual model of the system. After reviewing storage properties in CSM
v1.0 and local hydrogeologic information, the specific yield in layer 1 was reduced from a value of 0.2 to 0.1 in four
model grid cells located in the focus area (Figure 3-34). Outside of this modification, the storage properties remain
the same as applied in CSM v1.0. The horizontal hydraulic conductivity distribution in model layer 1 is shown in
Figure 3-35 and hydraulic conductivity maps for all model layers are included in Appendix J. Transmissivity, the
product of the aquifer horizontal hydraulic conductivity and the saturated thickness expressed in feet squared per
day (ft?/d), was computed for the UFA (layer 3 and 4) and the LFA (layer 6 and 7). UFA transmissivity is spatially
compared with normalized APT results in Figure 3-36 and graphically in Figure 3-37. The leakance coefficient,
computed as the vertical hydraulic conductivity divided by the confining unit thickness and expressed in units of
ft/d/ft (d"), was computed for layers 2 (ICU) and 5 (MCU 1) (Appendix J).
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Figure 3-34. Specific yield of layer 1 within the Central Springs Model focus area.
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Figure 3-35. Horizontal hydraulic conductivity values in layer 1 in the focus area
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Figure 3-36. Upper Floridan Aquifer (UFA) transmissivity from the calibrated model and normalized UFA
transmissivity from aquifer performance tests (APTs) within the focus area
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Figure 3-37. Scatterplot of modeled Upper Floridan Aquifer (UFA) transmissivity versus normalized
transmissivities from aquifer performance tests within the Central Springs Model domain
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4. Discussion

The recalibration of the CSM significantly improved the model prediction performance of groundwater levels in the
focus area, particularly in the SAS, which was a major objective of the model recalibration. Average RMS error
(RMSE) in the focus area reduced from 5.1 to 2.2 feet in the SAS, from 2.3 feet to 1.4 feet in the UFA, and from 2.0
to 1.7 feet in the LFA (Table 3-1). In addition, the residual mean decreased from 1.3 feet to 0.6 feet in the SAS,
relative to CSM v1.0 model performance. The magnitude of the minimum and maximum residual in the SAS within
the focus area was also reduced from -12.1 to -6.1 feet and from 24.5 to 5.6 feet, respectively. The percentage of
wells with a MAE less than 2.5 and 5.0 feet increased within all major aquifers within the focus area, with the most
significant increase occurring in the SAS, where 73% and 97% of wells had a MAE value of less than 2.5 and 5.0
feet, respectively. This is a significant improvement from CSM v1.0 in this area, where 56% and 80% of SAS wells
were simulated with a MAE below 2.5 and 5.0 feet, respectively. The percentage of wells with a R? value of greater
than 0.4, generated by regressing all simulated versus observed water levels, were generally similar to CSM v1.0
within the focus area and across all aquifers. Model-wide statistics also indicate there was general improvement in
the groundwater level calibration statistics from CSM v1.0 to CSM v1.1, with minor degradation occurring in the
LFA, where the minimum residual increased from -8.4 to -8.6 feet and the percentage of wells with an R-squared
value above 0.4 decreased from 95% to 92% after recalibration (Table 3-2). However, the maximum increase in
MAE at any individual LFA well outside of the focus area was only noted to be 0.8 feet (L-1049 — Leesburg
WWTF), which is minimal compared to the average observed head at the well of 72 feet.

Vertical head differences are one of the primary indicators of the degree of confinement between two aquifers and
improve the model’s ability to simulate degree of confinement in the region. The spatial distribution of simulated
and observed vertical head differences across the ICU (Figure 3-14) and MCU I (Figure 3-15) generally show good
agreement within the focus area, with some improvements from CSM v1.0 noted in Marion and Volusia County.
Furthermore, the recalibration resulted in no significant changes in model performance outside of the focus area. A
regression between mean simulated and observed vertical head differences across the SAS and UFA (Figure 3-16)
and the UFA to LFA (Figure 3-17) was performed and shows a higher R? value, indicating improvement in
correlation between observed and simulated vertical head differences across both confining units. This is important
for accurately predicting the propagation of impacts from groundwater pumping in the UFA and LFA to lakes,
rivers, and wetlands.

Review of average flooded cells in layer 1 in the focus area indicates flooding is generally minimal in magnitude
(within 5 to 10 feet) and isolated in spatial distribution (Figure 3-18). There was an increase in the number of
flooded cells in Volusia County, on average, compared to CSM v1.0, however this additional flooding occurs over
isolated areas.

The occurrence of dry cells in layer 1 was reduced within the focus area, primarily in western Volusia County,
relative to the CSM v1.0 (Figure 3-19). In Volusia County, dry cells in layer 1 are located within ridge areas, namely
the Crescent City and DeLand ridges, characterized by sandy deposits with high topographic elevation, karst
development, and lack of well-developed surface drainage (Williams 1997). These hydrogeologic characteristics
result in a relatively deep water table and thick unsaturated zone in these areas, conducive to the simulation of dry
cells in a regional groundwater flow model.

The simulation of major springs in the focus area were generally similar to CSM v1.0 model performance, with
some minimal degradation likely due to reduced weighting of spring flow calibration targets in the PEST calibration
procedure. The recalibrated model resulted in a decrease in the magnitude of average model error at Volusia Blue
Springs (reduced from 1.2% to 0.7%) and Alexander Springs (reduced from 2.6% to 2.3%). The average model error
slightly increased at Silver Springs (increased from 2.0% to 2.2%) and Silver Glen Springs (increased from 2.0% to
4.4%). However, the transient calibration criteria established for spring discharges was still maintained, with all first
magnitude springs in the focus area maintaining a model error of + 5% and second magnitude springs with reliable
data within + 10%.
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Simulated lake leakage rates were generally similar in direction and magnitude to CSM v1.0, in which both models
resulted in approximately 87 to 88% of lakes with an average leakage rate of & 20 inches per year. A considerable
improvement was made at Lake Weir, in which the simulated average leakage rate (-17.6 inches per year) matches
more closely with the estimated leakage rate (-13.5 inches per year). This can be attributed to recalibration of river
conductance and lake leakance terms and improved simulation of surficial groundwater levels in the vicinity of the
lake.

Model simulated cumulative baseflows were within range of estimated baseflows at major streamflow gages along
the St. Johns River and Ocklawaha River within the focus area (Table 3-4). Additionally, the Ocklawaha River near
Ocala gage (USGS 02239000), which simulated negative baseflow on average from 2005 to 2018 of -3.7 cfs in
CSM v1.0 (indicative of discharge from the river to the aquifer), simulated a net average positive baseflow of 33.7
cfs (indicate of discharge from the aquifer to the river) in CSM v1.1 which is within range of estimates from
baseflow separation methods (Table 3-4). This is an improvement from the previous version of the model and more
accurately represents the groundwater flow system in this region.

To assess the MODFLOW simulated water budget, HSPF-calculated baseflow (AGWO) was compared to the
cumulative baseflow calculated in the DRN and RIV packages of MODFLOW and HSPF-simulated saturated ET
(AGWET+ BASET) was compared to groundwater ET for the major river basins in the focus area (Upper St. Johns,
Lower St. Johns, and Ocklawaha). The comparison of baseflow shows that the two models are in general agreement
for the major river basins (Figure 4-1 to Figure 4-3). The groundwater ET is comparable in the Upper and Lower St.
Johns River, however, is undersimulated in the Ocklawaha River, as was the case in CSM v1.0 (Figure 4-4 to Figure
4-6). Further investigation of the water balance in the Ocklawaha River watershed is needed to improve the model
performance.
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HUC 03080101 @ Upper St. Johns
HSPF Mean = 5.44 inflyr MODFLOW Mean = 4.6 in/yr
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Figure 4-1. Simulated HSPF-calculated baseflow (AGWO) and cumulative baseflow calculated in the DRN and RIV
packages of MODFLOW for the Upper St. Johns River.
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HUC 03080103 @ Lower St. Johns
HSPF Mean = 7.69 infyr MODFLOW Mean = 3.61 in/yr
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Figure 4-2. Simulated HSPF-calculated baseflow (AGWO) and cumulative baseflow calculated in the DRN and RIV
packages of MODFLOW for the Lower St. Johns River.
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HUC 03080102 @ Ocklawaha
HSPF Mean =1.92 infyr MODFLOW Mean = 2.35 in/yr
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Figure 4-3. Simulated HSPF-calculated baseflow (AGWO) and cumulative baseflow calculated in the DRN and RIV
packages of MODFLOW for the Ocklawaha River.
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HUC 03080101 @ Upper St. Johns
HSPF Mean = 8.37 inflyr MODFLOW Mean = 6.53 in/yr
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Figure 4-4. Simulated HSPF Saturated ET and MODFLOW ET for the Upper St. Johns River.
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HUC 03080103 @ Lower St. Johns
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Figure 4-5. Simulated HSPF Saturated ET and MODFLOW ET for the Lower St. Johns River.
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HUC 03080102 @ Ocklawaha
HSPF Mean = 8.69 in/yr MODFLOW Mean = 2.99 in/yr
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Figure 4-6. Simulated HSPF Saturated ET and MODFLOW ET for the Ocklawaha River.

The reasonableness of the updated simulated hydraulic conductivities was assessed by reviewing the transmissivity
values of the UFA with APT data, spring locations (karst-dominated geology), and potentiometric surface contour
gradients. The leakance values of the ICU were compared against observed vertical head differences and literature
information to infer degree of confinement. Figure 4-7 shows the updated UFA transmissivity values with September
2014 potentiometric surface contours and spring locations. Small and large spacings between two contours of
potentiometric surface are usually indications of low and high aquifer transmissivities, respectively. As shown in
Figure 4-7, the recalibrated parameter distribution is generally consistent with contour spacing as high transmissivity
areas usually coincide with the contours with large spacing (flat gradients) whereas low transmissivity areas usually
coincide with contours with tight spacing (steep gradients). In addition, very high transmissivity values were assigned
to the areas of springs and their vicinities, which is consistent with the fact that aquifers are expected to be highly
transmissive in the vicinity of springs due to presence of conduits and fractures. Although the recalibrated
transmissivity values are generally within one order of magnitude of the APT-derived values in most of the focus area,
the transmissivity values in the model are higher than the APT-derived values in southern Volusia County, however,
this zone of high transmissivity is in proximity to Blue Spring, a first magnitude spring. APT values should be used
cautiously when comparing model parameters as they are usually derived from field tests using analytical solutions
with limitations. The quality of the field tests and data collection can significantly affect the transmissivity values
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derived from the APTs. In addition, the APTs (mostly lasting less than 72 hours) usually do not sufficiently stress the
aquifer more than a few miles, and therefore, the derived transmissivity values may not represent large areas.
Moreover, some of the APTs are based on only one pumping well (with no monitoring well nearby) and can produce
questionable transmissivity estimates due to frictional effects and water level changes in the pumping well. Figure 4-8
shows the recalibrated leakance values in the ICU with vertical head differences between the SAS and UFA. As
expected, low leakance values are generally in the areas of large vertical head differences and high leakance values
are generally in the areas of small vertical head distances, indicating the reasonableness of the leakance values in the
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Figure 4-7. Simulated UFA transmissivity plotted with the September 2014 UFA potentiometric surface contours
and spring locations.
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Figure 4-8. Simulated ICU (layer 2) leakance and observed vertical head differences between the SAS and UFA.
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5. Conclusions

The CSM v1.0 was updated and recalibrated to make the model a more suitable tool for regulatory decisions and to
improve model performance in areas where critical minimum flows and levels (MFL) water bodies are located. To
accomplish this, a focus area was delineated where the calibration of the CSM v1.0 could be improved (Figure 1-3).
Refinements in the focus area included updates to groundwater level targets used for calibration, river boundary
conditions, drain boundary conditions, and groundwater use data. After the model was updated, PEST optimization
was performed on the steady-state model to estimate hydraulic properties within the focus area. Aquifer parameters
within the focus area were adjusted within a range consistent with the known hydrogeology in the region. The steady-
state model hydraulic properties and storage properties were incorporated into a transient simulation for the period of
2005 to 2018 that was used to evaluate model performance.

The CSM vl.1 transient model performance in simulating groundwater levels was considerably improved within the
focus area. The model-wide groundwater level calibration statistics were also improved as a result of the improvements
in the focus area. Furthermore, the CSM v1.1 reliably estimated spring flows at first magnitude and second magnitude
springs with observed data and simulated baseflows within a reasonable range of estimates flows. Overall, this
provides greater confidence that CSM v1.1 should be considered an appropriate tool for assisting regulatory decisions,
MFL evaluations, and future water supply planning efforts.
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