Central Springs/East Coast Regional Water Supply Plan

Technical Methods Workshop

St. Johns River Water Management District, Palatka, FL (also via GoToWebinar)

July 21, 2021 5:05 pm

Agenda

- Welcome and introductions
- GoToWebinar housekeeping
- Projection methodology
- Groundwater modeling
- Water resource evaluation
 - Minimum flows and levels (MFLs)
 - Groundwater quality
 - Wetlands
- Question/Answer

Welcome and Introductions

Speakers

- Joy Kokjohn, Regional Water Supply Coordinator (CSEC)
- Jacy Crosby, Senior Water Use Analyst
- Lanie Sisco, Hydrologist IV
- Nathaniel Mouzon, Technical Program Manager (MFLs)

GoToWebinar Housekeeping

Asking Questions

- Please submit your questions using the Questions panel.
- Provide your name and employer before your question

Note: Today's presentation is being <u>recorded</u> and will be posted online within 48 hours.

	File View Help ⊕□□×								
->	▼ Audio								
	Sound Check 2								
@	Computer audio								
	Phone call								
	🖉 MUTED								
4	Transmit (Plantronics Savi 7xx-M) 🛛 🗸								
	Receive (Plantronics Savi 7xx-M) 🗸 🗸								
	Talking: Liz Davis								
	▼ Questions 🛛								
	⇒								
	[Enter a question for staff]								
	Send								
	Webinar Housekeeping								
	Webinar ID: 608-865-371								
	🛞 GoToWebinar								

Projection Methodology

Jacy Crosby Bureau of Water Supply Planning

Public Supply and Domestic Self-Supply

Population

- GIS model/parcel distribution
- BEBR medium
- Aggregated to utility service area

Public Supply Demand

- 2011–2015 average gross per capita (utility-specific)

Domestic Self-Supply Demand

- 2011–2015 average residential per capita (county average)

Agriculture

- Must consider agricultural water demand estimates produced by FDACS (ss. 373.709(2)(a), F.S.)
- FDACS publishes 20-year acreage and demand projections in Florida Statewide Agricultural Irrigation Demand (FSAID) reports
- Agriculture projections in CSEC RWSP taken from FSAID IV (2017)

Projections for Other Water Use Categories

- Commercial/Industrial/Institutional and Mining/Dewatering
 - Historic CII and MD per capita (2011-2015) * increase in population
- Landscape/Recreation/Aesthetic
 - Historic LRA per capita (2011-2015) * increase in population
- Power generation
 - 10-year site plans
 - Historic megawatt use per customer * increase in population
 - Future megawatt use * average (2011-2015) gallons per megawatt

Water Conservation Potential

Public Supply and DSS – Scenario 1:

- Percent reduction in water use based on implementation of best management practices (BMPs) with measurable water savings (CFWI 2015)
 - Indoor residential toilet, showerhead, and faucet replacements
 - Outdoor irrigation audits with associated improvements and soil moisture sensors
 - CII pre-rinse spray valve, showerhead, faucet, and urinal replacements and site-specific water audits

Water Conservation Potential

Public Supply and DSS – Scenario 2:

- Calculated average 2011-2015 gross per capita by sub-region
- Applied average gross per capita to utilities with larger per capita
- Corresponding percent reduction for public supply by county was applied to DSS

Water Conservation Potential (for all other non-agricultural use types)

Estimates of conservation potential based on the following BMPs (where applicable):

- Showerheads
- Faucets
- Toilets
- Urinals
- Irrigation audits
- St. Johns River Water Management District

- Soil moisture sensors
- Pre-rinse spray valves
- Site-specific C/I/I audits

Agricultural Water Conservation

- Produced by FDACS
- FSAID IV (2017)

FLORIDA STATEWIDE AGRICULTURAL IRRIGATION DEMAND ESTIMATED AGRICULTURAL WATER DEMAND, 2015 - 2040

THE BALMORAL GROUP 165 Lincoln Ave Winter Park, FL 32789

Reclaimed Water Availability

Additional current available flow:

- Scenario 1 apply FDEP reuse goal of 75% to existing flows not utilized beneficially
- Scenario 2 apply 2015 percent beneficial reuse by facility to existing flows not utilized

Reclaimed Water Availability

Future flow estimates:

- Calculated population growth (from parcel model) for each WWTP service area
- Assumed new wastewater flow of 85 gpcd¹
 - Scenario 1 apply FDEP reuse goal of 75% to future flow
 - Scenario 2 apply 2015 percent beneficial reuse by facility to future flow

¹ Vickers 2001; Mayer 1999; AWWA 1999

Groundwater Modeling

Lanie Sisco Bureau of Watershed Management and Modeling

Groundwater Model

- What?
 - A mathematical representation of groundwater flow through an aquifer system
- How?
 - By using a set of equations that describes the storage and movement of groundwater
- Why?
 - To predict the effects of groundwater withdrawals on natural systems (springs, lakes, wetlands) and evaluate benefits to natural systems from projects

CSEC Groundwater Models

- Volusia Model
- Northern District Model version 5 (NDMv5)
- East Central Florida Transient Expanded Model (ECFTX)

Adapted from Williams et al. 2015

Hydrostratigraphy

Volusia Model		NDMv5				ECFTX				
Hydrostratigraphy	Model Laver		Aquifers				Hydrostratigraphic Conceptualization			
riyurostratigrapity	IVIOUEI Layei	Formation	East-central	West-	Southwest	Model Layer		West Half	West Half East Half	
Surficial Aquifer	1		Florida	central Florida	Florida		1-{		Surficial Aquifer	Surficial Aquife
System		Undifferentiated		Surficial Aquifer		1	2	In	tormodiato Confining Unit	Intermediate
Intermediate	NA (implicit)	Hawthorn	Upper Confining Unit		2	4 7			Confining Unit	
confining unit		Tampa Limestone				3	3 -{	Upp	per Floridan Aquifer - Upper	Upper
Linnor Eloridan	2	(where permeable)			4 -{		Ocala La	ow-Permeability Zone (OCAPlpz)	Floridan Aquifer (UFA)	
Aquifer		Suwannee Limestone	Upper Floridan				5 -	Avon Darl		(High Dormoghility Zone (ADhaz)
Middle	NA (implicit)	Ocala Limestone			4	6 -	Avoir Puly	Middle Confining Unit I	Middle	
serniconning unit						5	7 -{		Overlap Unit.	LFA Confining
Lower Floridan Aquifer	3	Avon Park Formation	Middle	Middle cor	nfinina unit	6	8-{	Middle Con	fining Unit II	Units
riguner		1 officiation	unit				9-	Low	ver Floridan Aquifer – Upper	Lower
						7	10	Clausopito Mar	kar Law Dormonbility Unit (CLAUC Inv)	Floridan
		Oldsmar	r Lower Floridan				Gluuconite Mur	ker Low-Permeubling Onit (GLAOC-Ipu)	Aquifer	
		Formation						Lov	ver Floridan Aquifer – Basal	LFA)

Groundwater Modeling

- Data required to develop a groundwater model:
 - Aquifer and confining-unit properties (e.g., top/bottom elevation, conductivity, storage)
 - Evapotranspiration
 - Recharge
 - Water levels (aquifer and lakes)
 - Spring discharge
 - River baseflow
 - Lake seepage rates
 - Groundwater pumping

Groundwater Modeling

Water budget equation: Inflow – Outflow = Δ Storage

Model Inflows

- Recharge
- Irrigation
- Groundwater pumping (Injection, RIBs)
- Surface water loss
- Lateral boundaries

Model Outflows

- Spring flow
- Evapotranspiration
- Groundwater pumping
- Surface water discharge
- Lateral boundaries

<u>Δ Storage</u> Aquifer level decline or rise

Groundwater Model Output Example

Volusia Model

Shows predicted changes in aquifer levels due to changes in pumping

Water Resource Evaluation

Minimum Flows and Minimum Levels Water Quality Wetlands

Division of Water Supply Planning

Water Resource Evaluation

- Assumes that all water needed to meet projected demand will come from existing sources
- Predicts location and magnitude of impacts from future groundwater withdrawals
- Demands must be reduced or alternative sources must be developed to meet demand that would cause unacceptable impacts

Minimum Flows and Minimum Levels

Nathaniel Mouzon Joy Kokjohn

Minimum Flows and Minimum Levels (MFLs)

"...the limit at which further withdrawals would be significantly harmful to the water resources or ecology of the area."

Section 373.042(1), Florida Statutes

MFLs Process Overview

MFLs Determination

 Determine the most critical environmental features to protect and the minimum hydrologic regime required for their protection (MFLs condition)

MFLs Assessment

- Determine the current-pumping condition that represents current impacted conditions
- o MFL and current conditions compared to determine available water

Hydrograph: series of events of varying duration and frequency

WETLAND DATA COLLECTION

Field data collection along multiple transects

 Characterize and survey vegetation and soils

A. Cross-sectional view - lake floodplain

St. Johns River Water Management District

Multiple MFLs Events: Protecting the Hydrologic Regime

MFLs: Event Statistics

- Magnitude (how high or low)
- Duration (how long)
- Return interval (how often)

Minima		Minimum Level Components				
Levels	Environmental criteria	Level (ft NAVD88)	Duration (days)	Return Interval (years)		
Frequent High	Transitional shrub communities; Fish and wildlife habitat	40.2	30	4.3		
Minimum Average	Organic soils; Seasonally flooded wetland habitat	37.9	180	1.7		
Frequent Low	Frequent Low Shallow and deep marsh habitat; Organic soils		120	7.5		

MFLs Process Overview

MFLs Determination

 Determine the most critical environmental features to protect and the minimum hydrologic regime required for their protection (MFLs condition)

MFLs Assessment

- Determine the current-pumping condition that represents current impacted conditions
- **o** MFL and current conditions compared to determine available water

Time

MFLs Assessment

St. Johns River Water Management District

Impact Assessment: Historical Monthly Pumping Impact

No-Pumping and Current-Pumping timeseries

Frequency Analysis: UFA Freeboard or Deficit

- Comparison of current-pumping condition (CP) vs MFLs frequency for each event
- Weibull plotting position formula; annual maxima or minima
- Iterative decrease or increase from CP of UFA using surface water model
- Stop at point where further withdrawal would violate MFLs
- Increase from CP = Recovery
- Decrease from CP = Freeboard

MFLs STATUS: STRATEGY REQUIRED?

CSEC MFLs Assessment

- Bring MFL freeboard/deficit forward to base year (2015)
 - Use groundwater model to calculate change in aquifer level or spring flow from MFL condition to 2015 and apply to original MFL freeboard/deficit
 - Results in CSEC "current" MFL status
- Determine freeboard/deficit for end of planning horizon (2040)
 - Use groundwater model to calculate change in aquifer level or spring flow from 2015 to 2040 and apply to CSEC "current" freeboard/deficit
 - Results in CSEC "future" MFL status

Groundwater Quality

Jacy Crosby

Groundwater Quality

Evaluated chloride data from DOWN and permitted wells:

• 89 DOWN (UFA)

St. Johns River Water Management District

300 Permitted Wells (UFA and SAS)

Example: Testing for a Trend in Chloride

- Period of record: 2016 to 2021
- Median = 31.3 mg/L Cl⁻
- Are chloride levels significantly increasing?
- What is the predicted level in 2040?

Testing for a Trend in Chloride

- Nonparametric Mann-Kendall and Theil-Sen trend analysis
 - Resistant to outliers and missing data
 - Tested at the 95% significance level (p-value below 0.05)
 - Rate of changing chloride levels are estimated by the Sen's slope
- If significant, categorize the changing concentration (mg/L/year):
 - Greater than 3 = high rate of change
 - Between 1 and 3 = medium rate of change
 - Between 0 and 1 = low rate of change
 - Less than 0 mg/L/year = decreasing rate of change (improving quality)
- Determine wells of interest:
 - Wells with a significant medium or high rate of change in chloride levels (>1 mg/L/year)
 - Wells projected to exceed 250 mg/L chloride by 2040

Example: Testing for a Trend in Chloride

Period of record: 2016 to 2021

Median = 31.3 mg/L Cl-

Sen's Slope = 0.76 mg/L/yr Cl⁻ – "low" rate of change

• p-value = 0.01

 Predicted concentration at 2040 = 48.3 mg/L Cl⁻

Joy Kokjohn

Estimating Future Potential of Adverse Change to Wetlands

Kinser-Minno method

- GIS-based model
 - Soil permeability
 - Sensitivity of plant community to drawdown
 - Projected surficial aquifer decline

Estimating Potential of Adverse Change to Wetlands

- Soil permeability
 - NRCS permeability rate (inches/hour)
 - Grouped into high, medium, low drawdown sensitivity
- Vegetation sensitivity
 - Hydric = highly sensitive; Xeric = less sensitive
 - Grouped by sensitivity
- Wetland communities on permeable soils = high potential for harm

Estimating Future Potential of Adverse Change to Wetlands

Potential	Surficial Aquifer Decline					
For Change	High	Medium	Low			
High	High	High	Low			
Medium	High	Medium	Low			
Low	Low	Low	Low			

Question/Answer

CSEC RWSP Workshops

- Monday, July 26, 2021, at 5:30 pm Volusia County Council Chambers
- Wednesday, July 28, 2021, at 5:30 pm Indian River County Admin. Complex
- Thursday, July 29, 2021, at 5:30 pm Lake County Admin. Building

For more information,

visit <u>www.sjrwmd.com/water-supply/planning/csec-rwsp/</u> or contact Joy Kokjohn at (386)329-4223 or jkokjohn@sjrwmd.com

