APPENDIX F — INDICATORS OF HYDROLOGIC ALTERATION (IHA)

Indicators of Hydrologic Alteration for the Wekiva River at SR46

Indicators of Hydrologic Alteration (IHA) is a commonly used approach for characterizing temporal variability in the hydrologic regimes of flowing systems. IHA is also used to quantify the degree of system alteration resulting from perturbation (e.g., groundwater withdrawal, dam operation, flow diversion, etc.; Richter et al. 1996). The IHA approach is based on calculating and interpreting a suite of ecologically relevant flow statistics (i.e., indicators) that are important to river ecosystems and sensitive to disturbance.

The Nature Conservancy's IHA software (version 7.1) was used to calculate the standard suite of hydrologic indicators for the Wekiva River at SR 46, for both the no-pumping (NP) and current-pumping (CP) condition flow timeseries. IHA is typically used for large rivers, and so this analysis was only conducted for the mainstem Wekiva River at SR46. IHA results for the NP and CP conditions were compared to determine whether withdrawal results in a significant change to one or more of these ecologically relevant parameters. For each flow condition, 30 IHA parameters were calculated; these statistical parameters are divided into the following five groups:

- Group 1: Parameters that characterize seasonal patterns using magnitude and timing of monthly flows; indicators of habitat availability (wetted area, volume);
- Group 2: Parameters that characterize extreme conditions; magnitude and duration of annual extreme events important for physical structure and timing of reproduction for some species;
- Group 3: Parameters that characterize the timing of annual extreme (high and low) water conditions that can be key to some species' life-cycle stages;
- Group 4: Parameters that characterize the frequency and duration of high (above the P25 exceedance flow) and low (below the P75 exceedance flow) flood pulses; and
- Group 5: Parameters that characterize the rate and frequency of flow changes.

IHA parameter values, for each flow withdrawal scenario (no-pumping and current-pumping conditions), are presented below (Table F-1). For the majority of parameters, the percent reduction in value from the no-pumping to current-pumping condition is relatively small (i.e., most are less than 10%). However, some are greater than a 10% reduction, and some reflect even higher change (e.g., number of low flood pulses under current-pumping condition).

IHA software was used to compare all parameters between NP and CP flow conditions, to evaluate potential hydrologic alteration due to withdrawal. Median values for all parameters (under both conditions) were calculated, in addition to coefficients of dispersion (CDs) which equals: (75th percentile - 25th percentile) / 50th percentile (i.e., range normalized by median; Table F-2).

In addition to the 30 IHA parameters, 32 environmental flow components (EFCs) were also calculated, including low flows, extreme low flows, high flow pulses, small floods and large floods (Table F-3). These flood and drought statistics are ecologically relevant; it is recognized by river ecologists that high and low flow events are necessary to provide the full

Table F-1. Indicators of Hydrologic Alteration parameter values for Wekiva River at SR 46 no-pumping (NP) and current-pumping (CP) conditions; Difference between NP and CP values and CP as percent reduction from NP presented. Negative values represent an increase under CP, relative to NP condition; date of min and max flow are Julian dates. Parameter values are averaged across the entire POR (71 years).

		NP	СР	NP minus CP	(NP-CP)/NP (%)
	January	265.9	240.0	25.9	9.7
	February	265.3	239.0	26.2	9.9
	March	266.1	239.7	26.4	9.9
	April	255.0	228.5	26.5	10.4
Group 1:	Мау	242.1	215.7	26.4	10.9
mean for each	June	281.0	255.3	25.7	9.2
calendar month over	July	310.0	283.9	26.1	8.4
POR	August	331.3	305.3	26.0	7.8
	September	341.0	314.8	26.1	7.7
	October	308.9	282.7	26.2	8.5
	November	275.8	249.4	26.4	9.6
	December	268.0	242.0	26.1	9.7
	1-day min	215.1	189.3	25.8	12.0
	3-day min	217.1	190.7	26.4	12.2
Group 2: Annual	7-day min	218.8	192.4	26.4	12.1
minimum and maximum flows	30-day min	226.5	200.0	26.4	11.7
	90-day min	243.7	217.4	26.3	10.8
(means of all years in POR)	1-day max	824.3	804.4	19.9	2.4
	3-day max	796.7	775.8	20.9	2.6

		NP	СР	NP minus CP	(NP-CP)/NP (%)
	7-day max	710.1	687.4	22.6	3.2
Group 2, cont.	30-day max	483.4	458.6	24.8	5.1
oont.	90-day max	387.6	362.2	25.4	6.6
Group 3: Timing of	Date min	173.5	173.5	0.0	0.0
annual extremes (Julian date)	Date max	211.3	211.3	0.0	0.0
	Low pulse count (#)	5.3	7.7	-2.5	-46.4
Group 4: Frequency and duration	Low pulse duration (mean)	11.9	13.1	-1.1	-9.3
flow pulses	High pulse count (#)	6.7	5.8	0.9	13.9
	High pulse duration (mean)	9.2	8.3	0.9	10.1
Group 5: Rate and frequency of water condition change	Rise rate	8.1	8.4	-0.3	-4.1
	Fall rate	-3.2	-3.7	0.4	-14.0

Table F-2. Indicators of Hydrologic Alteration parameter values for Wekiva River at SR 46 no-pumping (NP) and current-pumping (CP) conditions. Median values and coefficient of dispersion (CD) are presented for NP and CP; deviation factors and significance counts are also presented (see text for definitions); significance counts < 0.05 are in bold

		Median		Coeff. Of Dispersion		Deviation Factor		Significance Count	
	IHA Parameter	NP	СР	NP	СР	Medians	CD	Medians	CD
	January	255.70	229.30	0.21	0.23	0.103	0.122	0.001	0.566
	February	266.30	240.80	0.23	0.26	0.096	0.113	0.003	0.483
	March	250.10	223.40	0.24	0.27	0.107	0.157	0.005	0.449
	April	249.10	222.70	0.25	0.29	0.106	0.142	0.007	0.358
	Мау	244.30	218.40	0.21	0.24	0.106	0.160	0.000	0.320
Group	June	259.00	234.00	0.23	0.24	0.096	0.070	0.002	0.826
1	July	298.50	271.20	0.30	0.33	0.091	0.108	0.010	0.705
	August	318.40	294.50	0.24	0.26	0.075	0.080	0.041	0.700
	September	312.40	284.80	0.27	0.30	0.088	0.117	0.019	0.716
	October	298.80	272.00	0.28	0.30	0.090	0.103	0.028	0.642
	November	269.90	243.20	0.19	0.22	0.099	0.111	0.000	0.562
	December	257.70	231.10	0.20	0.22	0.103	0.140	0.000	0.463
	1-day minimum	212.30	184.60	0.19	0.20	0.131	0.060	0.000	0.691
Group	3-day minimum	213.30	186.50	0.17	0.20	0.126	0.144	0.000	0.360
2 2	7-day minimum	214.90	188.60	0.18	0.20	0.123	0.131	0.000	0.436
	30-day minimum	224.20	197.10	0.16	0.19	0.121	0.155	0.000	0.408
	90-day minimum	237.40	211.20	0.20	0.23	0.110	0.120	0.000	0.507

		Median		Coeff. Of Dispersion		Deviation Factor		Significance Count	
	IHA Parameter	NP	СР	NP	СР	Medians	CD	Medians	CD
-	1-day maximum	747.10	723.90	0.47	0.49	0.031	0.036	0.703	0.837
Group 2, cont.	3-day maximum	724.10	701.30	0.46	0.48	0.031	0.026	0.723	0.854
_,	7-day maximum	655.10	635.80	0.45	0.47	0.029	0.034	0.606	0.854
	30-day maximum	447.00	421.60	0.40	0.42	0.057	0.058	0.093	0.778
	90-day maximum	381.50	355.90	0.25	0.27	0.067	0.084	0.136	0.628
Group	Date of minimum	151.00	151.00	0.13	0.12	0.000	0.065	0.931	0.909
3 ່	Date of maximum	236.00	236.00	0.25	0.25	0.000	0.000	0.943	0.995
	Low pulse count	4.00	8.00	1.75	0.63	1.000	0.643	0.000	0.019
Group	Low pulse duration	7.00	9.00	1.29	0.94	0.286	0.265	0.043	0.261
4	High pulse count	7.00	5.00	0.57	0.60	0.286	0.050	0.011	0.952
	High pulse duration	7.00	7.25	0.71	0.83	0.036	0.159	0.880	0.399
Group	Rise rate	7.70	7.97	0.39	0.37	0.035	0.061	0.474	0.795
5	Fall rate	-3.11	-3.46	-0.40	-0.43	0.113	0.087	0.057	0.628

		Deviatio	n Factor	Significance Count		
	EFC Parameter	Median	CD	Median	CD	
	January low flow	0.05	0.08	0.024	0.693	
	February low flow	0.06	0.14	0.001	0.447	
	March low flow	0.05	0.28	0.045	0.181	
	April low flow	0.03	0.12	0.230	0.534	
	May low flow	0.06	0.46	0.002	0.016	
Low	June low flow	0.05	0.13	0.016	0.548	
Flow	July low flow	0.05	0.17	0.044	0.293	
	August low flow	0.06	0.10	0.002	0.558	
	September low flow	0.02	0.18	0.100	0.565	
	October low flow	0.08	0.14	0.001	0.332	
	November low flow	0.06	0.02	0.003	0.907	
	December low flow	0.06	0.12	0.012	0.530	
	Extreme low peak	0.02	0.66	0.008	0.066	
Extreme	Extreme low duration	0.06	0.41	0.747	0.235	
Low Flow	Extreme low timing	0.04	0.05	0.554	0.904	
	Extreme low frequency	4.00	0.65	0.000	0.014	
High	High flow peak	0.03	0.09	0.167	0.749	
Flow Pulse	High flow duration	0.17	0.02	0.221	0.955	

Table F-3. Summary of IHA Environmental Flow Components (EFC) for Wekiva River at SR 46 no-pumping (NP) and current-pumping (CP) conditions; CD = coefficient of dispersion; significance counts < 0.05 are in bold.

		Deviatio	n Factor	Significance Count		
	EFC Parameter	Median	CD	Median	CD	
	High flow timing	0.05	0.09	0.442	0.624	
High Flow Pulse,	High flow frequency	0.17	0.10	0.339	0.730	
cont.	High flow rise rate	0.27	0.20	0.004	0.219	
	High flow fall rate	0.34	0.23	0.000	0.296	
	Small flood peak	0.00	0.19	0.915	0.530	
	Small flood duration	0.29	0.29	0.256	0.412	
Small Flood	Small flood timing	0.00	0.02	0.966	0.952	
	Small flood rise rate	0.98	0.44	0.145	0.570	
	Small flood fall rate	0.50	0.34	0.049	0.310	
	Large flood peak	0.04	0.07	0.777	0.886	
	Large flood duration	0.23	0.48	0.727	0.486	
Large Flood	Large flood timing	0.00	0.03	0.699	0.931	
	Large flood rise rate	0.68	0.19	0.230	0.739	
	Large flood fall rate	0.04	0.20	0.895	0.671	

spectrum of ecological functions that maintain a system's integrity over time (Richter et al., 1996, Poff et al., 1997). Low flows have a strong influence on the diversity and abundance of river flora and fauna. High flows increase access to habitats, especially during important migration seasons, inundate floodplains supporting important nutrient and carbon pathways including the base of production for various river food webs (see attachment for more details regarding ecosystem functions of different EFCs). Default software threshold values were used for EFC parameters; these include:

<u>High flow threshold</u>: All flows greater than the 75th percentile of daily flows are classified as high flows. The 75th percentile flow *as defined in the IHA software* is equal to a 25th

exceedance percentile flow (i.e., this will be referred to as a P25 flow elsewhere in this MFLs report).

Low flow threshold: All flows less than or equal to the 50th percentile of daily flows are classified as low flow events.

<u>High flow start rate threshold:</u> When flows are between the high flow and low flow thresholds, this parameter controls the start of high flow events. It also controls whether the ascending limb of an event is restarted from the descending limb. The default value is the 75th *exceedance* percentile flow (called the 25th percentile flow in the IHA software).

<u>High flow end rate threshold:</u> When flows are between the high flow and low flow thresholds, this parameter is used to end high flow events during their descending limb. It also controls the transition between the ascending and descending limb of an event. The default value is the 90th *exceedance* percentile flow (called the 10th percentile flow in the IHA software).

<u>Small flood minimum peak flow</u>: All high flow events with a peak flow greater than or equal to a 2-year return interval flood; high flow events are defined above.

<u>Large flood minimum peak flow</u>: All high flow events with a peak flow greater than or equal to a 10-year return interval flood; high flow events are defined above.

<u>Extreme low flows</u>: All low flow days with a flow value less than or equal to the 10th percentile of daily low flows were classified as extreme low flows. The 10th percentile flow *as defined in the IHA software* is equal to a 90th *exceedance* percentile flow (i.e., this will be referred to as a P90 flow elsewhere in this MFLs report).

A deviation factor, which equals: |NP-CP |/NP, was calculated for both medians and CDs for all IHA and EFC parameters; this is similar to a percent reduction in the parameter under the CP condition. According to IHA developers, a deviation factor at or above 10% (i.e., 0.10) is an indicator that instream habitat is sensitive to and could be harmed by flow reduction (Richter et al. 2011). About half of the parameter medians and coefficients of dispersion had deviation factors above 10%. Most were in groups 1 and 2 and most were very close to 10%.

A significance count was calculated for both medians and CDs; this equals the fraction of 1,000 random trials (i.e., shuffles of the data) for which the deviation values (for median and CD) is greater than for the real data. Significance count interpretation is similar to a *p*-value, with values closer to 0 representing a significant difference between NP and CP, and values closer to 1 representing no significant difference between the two conditions (Tables F-2 and F-3).

All IHA parameters in group 1 and about half in group 2 had significantly different medians (i.e., significance counts < 0.05). In group 2 these were all minima, indicating significantly

different low flows, but not high flows. This is to be expected because the difference between NP and CP is due to groundwater pumping, which affects baseflow more than higher flows.

Very few EFCs exhibited a large change between the NP and CP conditions. However, there were significant differences in the median values of a couple of low flow parameters, including numerous monthly low flows and two of the extreme low flow parameters (Table F-3). A few of these same low flow parameters also exhibited significantly different coefficients of dispersion between the two flow scenarios, suggesting changes to low flow variability under the CP condition (Table F-3).

Overall, the magnitude of change (difference between medians) for all IHA parameters was moderate (about 9%), which is similar to the difference in long-term mean flow difference (8.7%). Very few EFC parameters exhibited a significant change to central tendency (median) or variability (coefficient of dispersion), though several of the low flow parameters do exhibit some change.

Given that numerous IHA parameters are right on the edge of exhibiting significant differences (e.g., deviations factors $\geq 10\%$, and significance counts < 0.05), and that numerous low flow EFCs are exhibiting change, this analysis indicates that the current-pumping condition is not overly constraining (i.e., changes in important flow statistics are starting to exhibit significant changes at current-pumping). This supports setting the limit of pumping at the current-pumping condition for the Wekiva River and contributing water bodies.