IHA Appendix Attachment: From IHA Manual V7.1, Table 2. Summary of Environmental Flow Components (EFC) Parameters and their Ecosystem Influences

EFC Type	<u>Hydrologic Parameters</u>	Ecosystem Influences
1. Monthly low flows	Mean or median values of low flows during each calendar month	 Provide adequate habitat for aquatic organisms Maintain suitable water temperatures, dissolved oxygen, and water chemistry Maintain water table levels in floodplain, soil moisture for plants Provide drinking water for terrestrial animals Keep fish and amphibian eggs suspended Enable fish to move to feeding and spawning areas Support hyporheic organisms (living in saturated sediments)
2. Extreme low flows	Frequency of extreme low flows during each water year or season Mean or median values of extreme low flow event: • Duration (days) • Peak flow (minimum flow during event) • Timing (Julian date of peak flow) ———————————————————————————————————	 Enable recruitment of certain floodplain plant species Purge invasive, introduced species from aquatic and riparian communities Concentrate prey into limited areas to benefit predators
3. High flow pulses	Frequency of high flow pulses during each water year or season Mean or median values of high flow pulse event: • Duration (days) • Peak flow (maximum flow during event) • Timing (Julian date of peak flow) • Rise and fall rates Subtotal 6 parameters	 Shape physical character of river channel, including pools, riffles Determine size of streambed substrates (sand, gravel, cobble) Prevent riparian vegetation from encroaching into channel Restore normal water quality conditions after prolonged low flows, flushing away waste products and pollutants Aerate eggs in spawning gravels, prevent siltation Maintain suitable salinity conditions in estuaries

4. Small floods	Frequency of small floods during each water year or season Mean or median values of small flood event: • Duration (days) • Peak flow (maximum flow during event) • Timing (Julian date of peak flow) • Rise and fall rates	 Applies to small and large floods: Provide migration and spawning cues for fish Trigger new phase in life cycle (i.e insects) Enable fish to spawn in floodplain, provide nursery area for juvenile fish Provide new feeding opportunities for fish, waterfowl Recharge floodplain water table Maintain diversity in floodplain forest types through prolonged inundation (i.e. different plant species have different tolerances) Control distribution and abundance of plants on floodplain Deposit nutrients on floodplain
5. Large flood:	Subtotal 6 parameters Frequency of large floods during each water year or season Mean or median values of large flood event: Duration (days) Peak flow (maximum flow during event) Timing (Julian date of peak flow) Rise and fall rates	Applies to small and large floods: • Maintain balance of species in aquatic and riparian communities • Create sites for recruitment of colonizing plants • Shape physical habitats of floodplain • Deposit gravel and cobbles in spawning areas • Flush organis materials (food) and woody debris (habitat structures) into channel • Purge invasive, introduced species from aquatic and riparian communities • Disburse seeds and fruits of riparian plants • Drive lateral movement of river channel, forming new habitats (secondary channels, oxbow lakes) • Provide plant seedlings with prolonged
	Subtotal 6 parametersGrand total 34 parameters	access to soil moisture