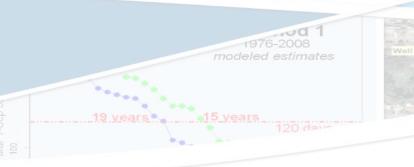






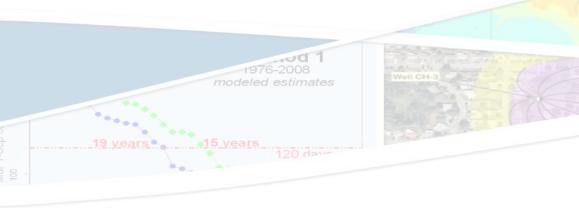

#### **Review Findings**


- Model setup
- Input Data Review
- Calibration Review
- Long-term Simulation Review
- Conclusion



EDSCIENCE & ENGINEERING SOLUTIONS

# **Model Setup**


Revised WPA-2





### **Basin Conceptualization**

- 5 basins
- 4 directly contributing to Lake Weir
- 1 indirectly through groundwater outflow only





#### **Morriston Basin**

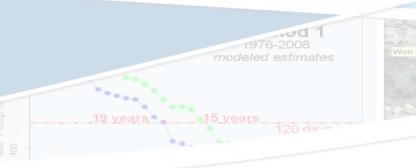
- Basin 5, defined as Morriston Basin in the model, is a closed or internally drained basin and produces no direct runoff to Lake Weir
- Although basin 5 does not share a boundary with the lake (basin 5 is 1.5 miles from the lake), the Active
   GroundWater Outflow (AGWO) is routed directly to the lake
- The pervious land segments for basin
   5 have runoff that is not routed





#### **Morriston Basin**

- There are impervious land segments associated with Basin 5 that have large surface water outflows
- If the basin is internally drained, the large volumes of impervious outflow need to be routed somewhere to preserve mass balance
- If the basin drainage to a sink is not present, then the parameters should be adjusted to reduce the impervious surface outflow

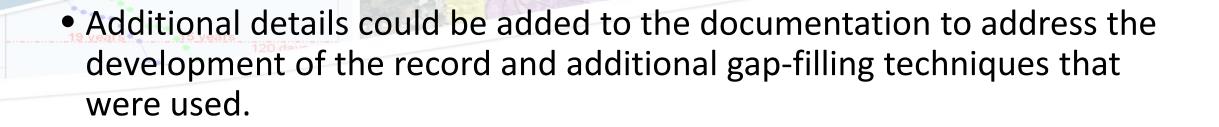

| ***IMPLND 501 | 39.66  | RCHRES | 1 | 2 |
|---------------|--------|--------|---|---|
| ***IMPLND 502 | 52.08  | RCHRES | 1 | 2 |
| ***IMPLND 503 | 998.24 | RCHRES | 1 | 2 |
| ***IMPLND 504 | 420.48 | RCHRES | 1 | 2 |

|     | Time Series |              |              |              |              |
|-----|-------------|--------------|--------------|--------------|--------------|
|     | List        |              |              |              |              |
|     | History 1   | from         | from         | from         | from         |
|     |             | LakeWeir.hbn | LakeWeir.hbn | LakeWeir.hbn | LakeWeir.hbn |
|     | Constituent | SURO         | SURO         | SURO         | SURO         |
|     | Land        | 501          | 502          | 503          | 504          |
|     | Segment     |              |              |              |              |
|     | Id          | 1658         | 1664         | 1670         | 1676         |
|     | Min         | 18.454       | 18.454       | 18.454       | 18.454       |
| 2   | Max         | 51.865       | 51.865       | 51.865       | 51.865       |
| - [ | Mean        | 36.798       | 36.798       | 36.798       | 36.798       |



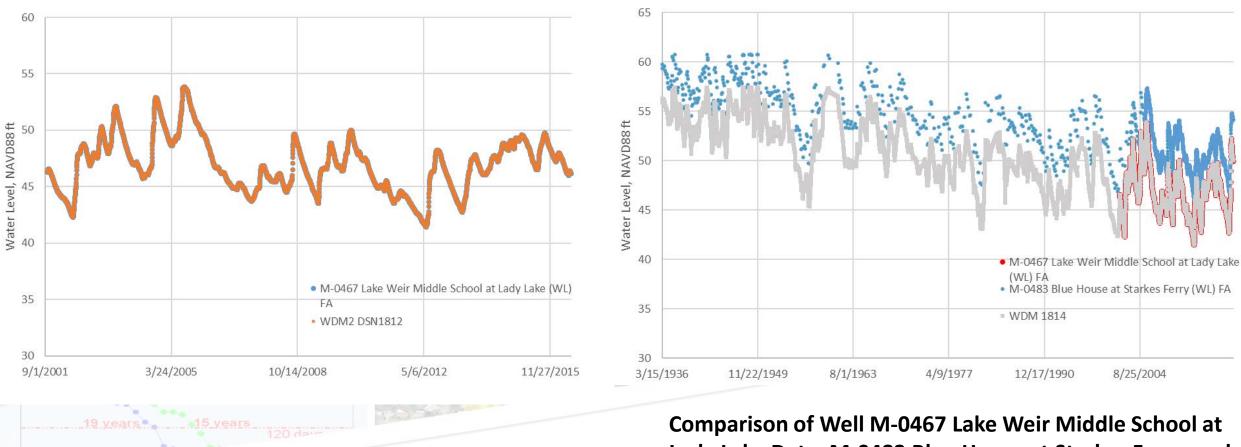
# Input data

Revised WPA-2 Boundary 5






#### Rainfall


#### **Appendix A Lake Weir Data Review Summary Report , DSLLC 2016**

The composite rainfall data were obtained by combining data at NOAA station of Lisbon (01/01/1948 – 05/26/1988) and SJRWMD station of Smith Lake at Belleview (05/27/1988 – 12/31/2015). Rainfall data from another NOAA station (Ocala) and three SJRWMD stations (Sunny Hill South #1, Sunny Hill C-D #5, and Blue House at Starkes Ferry) were used to fill in the missing rainfall data.





#### **Groundwater Levels**



Comparison of Well M-0467 Lake Weir Middle School at Lady Lake Data (DSLLC, 2016)

Comparison of Well M-0467 Lake Weir Middle School at Lady Lake Data, M-0483 Blue House at Starkes Ferry, and the extended Lady Lake well time series produced from Line of Organic Correlation (LOC) WDM 1814 (District, 2019)

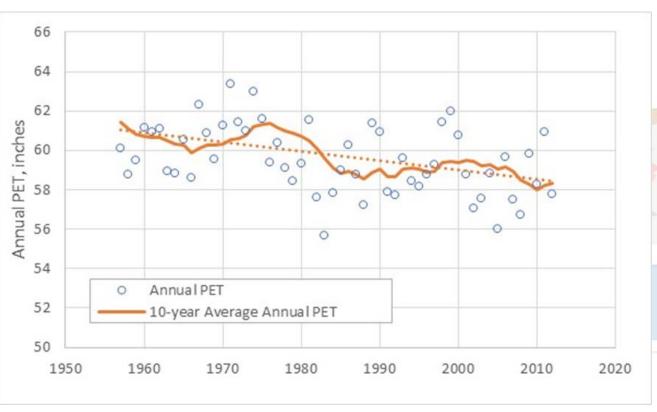


#### Land Use

- 2009 Land Use coverage used to develop land segments
- 2009 falls within the calibration period
- Discrepancies in land use when compared to more recent aerials
- For future use of this model, land use would need to be updated to reflect the correct land use in the watershed



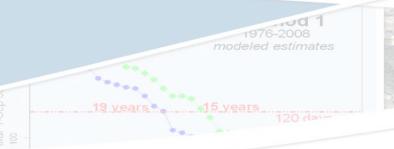



#### Potential Evapotranspiration (PET) Data

#### Table 2. Annual potential evapotranspiration (PET) accumulation (in/yr) of time period used in HSPF

|        | Calibrat                      | ion Model                                      | Long-term Simulation Model |                             |  |  |
|--------|-------------------------------|------------------------------------------------|----------------------------|-----------------------------|--|--|
|        | PET<br>( <u>DSLLC ,</u> 2016) | PET Adj<br>( <u>DSLLC ,</u> 2016) <sup>1</sup> | PET<br>(District, 2019)    | PET Adj<br>(District, 2019) |  |  |
| Min    | 58.91                         | 47.72                                          | 57.95                      | 46.95                       |  |  |
| Max    | 64.19                         | 52.00                                          | 65.91                      | 53.39                       |  |  |
| Median | 60.72                         | 49.19                                          | 61.59                      | 49.89                       |  |  |
| Mean   | 61.16                         | 49.55                                          | 61.60                      | 49.91                       |  |  |

1. Multiplier of 0.8101 was used by the SJRWMD to adjust the calculated evaporation values by the Hargreaves approach to match GOES PET estimates






Non-Adjusted Annual PET Trend



## **Model Calibration**





#### Summary Statistics for Daily and Monthly Stages

| Stage | Sample<br>size | Mean-<br>Observed | Mean-<br>Modeled | NSE   | Percentage of modeled stages<br>within ±0.5 feet of measured data |
|-------|----------------|-------------------|------------------|-------|-------------------------------------------------------------------|
| Daily | 4,108          | 51.83             | 51.87            | 0.93  | 83.9%                                                             |
| Month | ly 132         | 51.83             | 51.87            | 0.932 | 84.8%                                                             |



#### Total Actual Evapotranspiration (TAET) Summary

|      | Low             | Medium          | High             | Comm.        |        |       |         |             |        |                 |        |       |         |       |       |
|------|-----------------|-----------------|------------------|--------------|--------|-------|---------|-------------|--------|-----------------|--------|-------|---------|-------|-------|
| Year | Density<br>Res. | Density<br>Res. | Densit<br>y Res. | /<br>Indust. | Mining | Open  | Pasture | Gen.<br>Ag. | Groves | Range/<br>Shrub | Forest | Water | Wetland | PET   | SUPY  |
|      | P:101           | P:102           | P:103            | P:104        | P:105  | P:106 | P:107   | P:108       | P:109  | P:110           | P:111  | P:112 | P:113   |       |       |
| 2003 | 35.65           | 35.65           | 35.65            | 35.65        | 33.70  | 33.58 | 36.97   | 39.91       | 39.91  | 41.50           | 41.55  | 39.11 | 39.11   | 47.83 | 51.26 |
| 2004 | 33.06           | 33.06           | 33.06            | 33.06        | 30.82  | 30.72 | 34.20   | 37.26       | 37.26  | 38.69           | 39.02  | 38.99 | 38.99   | 49.12 | 54.00 |
| 2005 | 34.80           | 34.80           | 34.80            | 34.80        | 32.65  | 32.66 | 36.00   | 39.11       | 39.11  | 40.68           | 41.19  | 40.16 | 40.16   | 47.72 | 54.37 |
| 2006 | 21.71           | 21.71           | 21.71            | 21.71        | 19.95  | 20.50 | 22.94   | 24.63       | 24.63  | 25.20           | 26.29  | 21.89 | 21.89   | 51.19 | 25.69 |
| 2007 | 29.18           | 29.18           | 29.18            | 29.18        | 27.58  | 27.47 | 30.31   | 32.34       | 32.34  | 33.35           | 33.40  | 33.29 | 33.29   | 49.49 | 46.28 |
| 2008 | 30.67           | 30.67           | 30.67            | 30.67        | 28.32  | 28.67 | 31.71   | 34.76       | 34.76  | 35.86           | 37.02  | 38.74 | 38.74   | 48.84 | 45.23 |
| 2009 | 31.54           | 31.54           | 31.54            | 31.54        | 29.60  | 29.75 | 32.70   | 34.71       | 34.71  | 36.01           | 36.35  | 34.59 | 34.59   | 50.22 | 49.37 |
| 2010 | 32.49           | 32.49           | 32.49            | 32.49        | 29.90  | 30.20 | 33.05   | 35.41       | 35.41  | 37.00           | 37.52  | 33.54 | 33.54   | 50.03 | 43.73 |
| 2011 | 29.38           | 29.38           | 29.38            | 29.38        | 27.36  | 27.31 | 30.57   | 33.15       | 33.15  | 34.55           | 34.64  | 34.03 | 34.03   | 52.00 | 42.81 |
| 2012 | 33.56           | 33.56           | 33.56            | 33.56        | 30.99  | 31.18 | 34.05   | 36.36       | 36.36  | 37.83           | 38.11  | 35.40 | 35.40   | 50.12 | 48.50 |
| 2013 | 28.23           | 28.23           | 28.23            | 28.23        | 26.61  | 26.79 | 29.31   | 30.97       | 30.97  | 32.07           | 32.33  | 32.45 | 32.45   | 49.19 | 39.63 |
| 2014 | 36.42           | 36.42           | 36.42            | 36.42        | 34.33  | 34.22 | 37.42   | 40.48       | 40.48  | 42.12           | 42.16  | 43.00 | 43.00   | 48.82 | 64.13 |
| Avg. | 31.39           | 31.39           | 31.39            | 31.39        | 29.32  | 29.42 | 32.43   | 34.92       | 34.92  | 36.24           | 36.63  | 35.43 | 35.43   | 47.83 | 51.26 |

#### SURO and RETS Summary for Impervious areas

• RETSC in the uci file is set to 0.1 in for all impervious land use

|                            | l:101 | l:101 | l:102 | l:102 | I:103 | I:103 | I:104 | I:104 | l:201 | l:201 | I:203 | I:203 |
|----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Year                       | SURO  | RETS  |
| 2003                       | 40.2  | 0.0   | 40.2  | 0.0   | 40.2  | 0.0   | 40.2  | 0.0   | 40.2  | 0.0   | 40.2  | 0.0   |
| 2004                       | 43.7  | 0.0   | 43.7  | 0.0   | 43.7  | 0.0   | 43.7  | 0.0   | 43.7  | 0.0   | 43.7  | 0.0   |
| 2005                       | 42.1  | 0.0   | 42.1  | 0.0   | 42.1  | 0.0   | 42.1  | 0.0   | 42.1  | 0.0   | 42.1  | 0.0   |
| 2006                       | 18.5  | 0.0   | 18.5  | 0.0   | 18.5  | 0.0   | 18.5  | 0.0   | 18.5  | 0.0   | 18.5  | 0.0   |
| 2007                       | 36.0  | 0.0   | 36.0  | 0.0   | 36.0  | 0.0   | 36.0  | 0.0   | 36.0  | 0.0   | 36.0  | 0.0   |
| 2008                       | 35.4  | 0.0   | 35.4  | 0.0   | 35.4  | 0.0   | 35.4  | 0.0   | 35.4  | 0.0   | 35.4  | 0.0   |
| 2009                       | 37.9  | 0.0   | 37.9  | 0.0   | 37.9  | 0.0   | 37.9  | 0.0   | 37.9  | 0.0   | 37.9  | 0.0   |
| 2010                       | 34.7  | 0.0   | 34.7  | 0.0   | 34.7  | 0.0   | 34.7  | 0.0   | 34.7  | 0.0   | 34.7  | 0.0   |
| <sup>sep</sup> <b>2011</b> | 34.7  | 0.0   | 34.7  | 0.0   | 34.7  | 0.0   | 34.7  | 0.0   | 34.7  | 0.0   | 34.7  | 0.0   |
| 2012                       | 38.4  | 0.0   | 38.4  | 0.0   | 38.4  | 0.0   | 38.4  | 0.0   | 38.4  | 0.0   | 38.4  | 0.0   |
| 2013                       | 28.2  | 0.0   | 28.2  | 0.0   | 28.2  | 0.0   | 28.2  | 0.0   | 28.2  | 0.0   | 28.2  | 0.0   |
| 2014                       | 51.9  | 0.0   | 51.9  | 0.0   | 51.9  | 0.0   | 51.9  | 0.0   | 51.9  | 0.0   | 51.9  | 0.0   |



#### Water Balance Summary for Pervious Land Use

| Land use | SUPY  | PET   | TAET  | SURO | IGWI | AGWI |       | Land use | SUPY  | PET   | TAET  | SURO | IGWI | AGWI |
|----------|-------|-------|-------|------|------|------|-------|----------|-------|-------|-------|------|------|------|
| P:101    | 47.08 | 49.55 | 31.39 | 0.84 | 8.38 | 6.72 | 1     | P:301    | 47.08 | 49.55 | 31.30 | 0.84 | 8.44 | 6.77 |
| P:102    | 47.08 | 49.55 | 31.39 | 0.84 | 8.38 | 6.72 | 1     | P:302    | 47.08 | 49.55 | 31.30 | 0.84 | 8.44 | 6.77 |
| P:103    | 47.08 | 49.55 | 31.39 | 0.84 | 8.38 | 6.72 | 1     | P:303    | 47.08 | 49.55 | 31.30 | 0.84 | 8.44 | 6.77 |
| P:104    | 47.08 | 49.55 | 31.39 | 0.84 | 8.38 | 6.72 | 1     | P:304    | 47.08 | 49.55 | 31.30 | 0.84 | 8.44 | 6.77 |
| P:105    | 47.08 | 49.55 | 29.32 | 0.48 | 9.76 | 7.82 | 1     | P:306    | 47.08 | 49.55 | 29.32 | 0.42 | 9.84 | 7.89 |
| P:106    | 47.08 | 49.55 | 29.42 | 0.41 | 9.78 | 7.84 | 1     | P:307    | 47.08 | 49.55 | 32.36 | 0.29 | 8.30 | 6.66 |
| P:107    | 47.08 | 49.55 | 32.44 | 0.28 | 8.25 | 6.62 | 1     | P:308    | 47.08 | 49.55 | 34.86 | 0.10 | 7.14 | 5.72 |
| P:108    | 47.08 | 49.55 | 34.92 | 0.10 | 7.10 | 5.69 | 1     | P:309    | 47.08 | 49.55 | 34.86 | 0.10 | 7.14 | 5.73 |
| P:109    | 47.08 | 49.55 | 34.92 | 0.09 | 7.10 | 5.70 | 1     | P:310    | 47.08 | 49.55 | 36.19 | 0.22 | 6.25 | 5.01 |
| P:110    | 47.08 | 49.55 | 36.24 | 0.22 | 6.22 | 4.99 | 1     | P:311    | 47.08 | 49.55 | 36.58 | 0.02 | 6.25 | 5.01 |
| P:111    | 47.08 | 49.55 | 36.63 | 0.02 | 6.23 | 4.99 | 1     | P:312    | 47.08 | 49.55 | 35.36 | 0.00 | 8.57 | 6.87 |
| P:112    | 47.08 | 49.55 | 35.43 | 0.00 | 8.50 | 6.82 | 1     | P:313    | 47.08 | 49.55 | 35.36 | 0.00 | 8.57 | 6.87 |
| P:113    | 47.08 | 49.55 | 35.43 | 0.00 | 8.50 | 6.82 | 1     | P:401    | 47.08 | 49.55 | 31.14 | 0.77 | 8.58 | 6.88 |
| P:201    | 47.08 | 49.55 | 31.22 | 0.81 | 8.51 | 6.82 | 1     | P:402    | 47.08 | 49.55 | 31.14 | 0.77 | 8.58 | 6.88 |
| P:203    | 47.08 | 49.55 | 31.22 | 0.81 | 8.51 | 6.82 | 1     | P:404    | 47.08 | 49.55 | 31.14 | 0.77 | 8.58 | 6.88 |
| P:206    | 47.08 | 49.55 | 29.22 | 0.40 | 9.92 | 7.95 |       | P:406    | 47.08 | 49.55 | 29.13 | 0.37 | 9.99 | 8.01 |
| P:207    | 47.08 | 49.55 | 32.28 | 0.28 | 8.36 | 6.71 |       | P:407    | 47.08 | 49.55 | 32.21 | 0.26 | 8.42 | 6.75 |
| P:208    | 47.08 | 49.55 | 34.81 | 0.10 | 7.18 | 5.76 |       | P:408    | 47.08 | 49.55 | 34.75 | 0.09 | 7.22 | 5.79 |
| P:209    | 47.08 | 49.55 | 34.81 | 0.09 | 7.18 | 5.76 | II CI | P:409    | 47.08 | 49.55 | 34.75 | 0.09 | 7.22 | 5.79 |
| P:210    | 47.08 | 49.55 | 36.14 | 0.21 | 6.29 | 5.04 | 84    | P:410    | 47.08 | 49.55 | 36.10 | 0.19 | 6.33 | 5.08 |
| P:211    | 47.08 | 49.55 | 36.54 | 0.02 | 6.28 | 5.04 |       | P:411    | 47.08 | 49.55 | 36.49 | 0.02 | 6.31 | 5.06 |
| P:212    | 47.08 | 49.55 | 35.31 | 0.00 | 8.62 | 6.91 |       | P:412    | 47.08 | 49.55 | 35.25 | 0.00 | 8.68 | 6.96 |
| P:213    | 47.08 | 49.55 | 35.31 | 0.00 | 8.62 | 6.91 |       | P:413    | 47.08 | 49.55 | 35.25 | 0.00 | 8.68 | 6.96 |

| Land use | SUPY  | PET   | TAET  | SURO | IGWI  | AGWI |
|----------|-------|-------|-------|------|-------|------|
| P:501    | 47.08 | 49.55 | 31.06 | 0.72 | 8.66  | 6.95 |
| P:502    | 47.08 | 49.55 | 31.06 | 0.72 | 8.66  | 6.95 |
| P:503    | 47.08 | 49.55 | 31.06 | 0.72 | 8.66  | 6.95 |
| P:504    | 47.08 | 49.55 | 31.06 | 0.72 | 8.66  | 6.95 |
| P:506    | 47.08 | 49.55 | 29.04 | 0.34 | 10.07 | 8.07 |
| P:507    | 47.08 | 49.55 | 32.14 | 0.23 | 8.48  | 6.80 |
| P:508    | 47.08 | 49.55 | 34.69 | 0.08 | 7.26  | 5.82 |
| P:509    | 47.08 | 49.55 | 34.69 | 0.07 | 7.26  | 5.82 |
| P:510    | 47.08 | 49.55 | 36.06 | 0.18 | 6.37  | 5.11 |
| P:511    | 47.08 | 49.55 | 36.45 | 0.02 | 6.34  | 5.08 |
| P:512    | 47.08 | 49.55 | 35.18 | 0.00 | 8.74  | 7.00 |
| P:513    | 47.08 | 49.55 | 35.18 | 0.00 | 8.74  | 7.00 |

- PET is low
- Range/shrub and forest segments have higher TAET than water and wetland segments



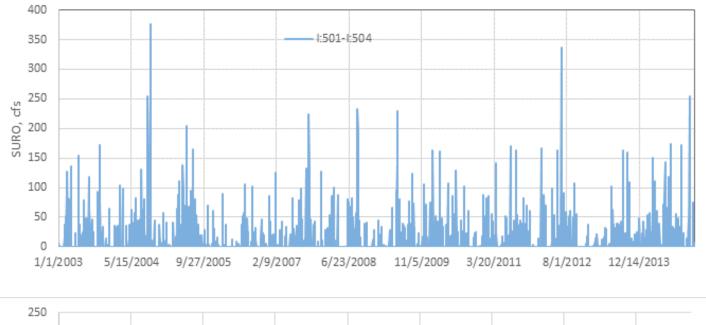
#### Water Balance Summary for Impervious Land Use

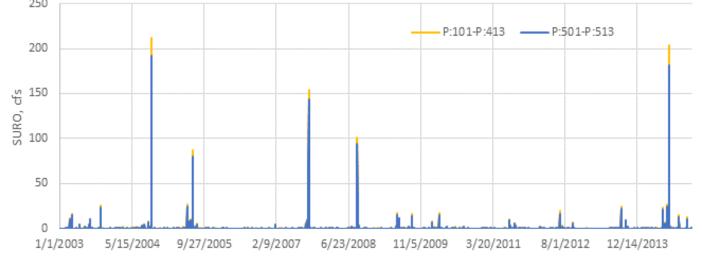
| Land use     | SUPY  | PET   | SURO  | IMPEV | RETS | SURS |
|--------------|-------|-------|-------|-------|------|------|
| I:101- I:104 | 47.08 | 49.55 | 36.80 | 10.29 | 0.00 | 0.00 |
| I:201- I:203 | 47.08 | 49.55 | 36.80 | 10.29 | 0.00 | 0.00 |
| I:301-I:304  | 47.08 | 49.55 | 36.80 | 10.29 | 0.00 | 0.00 |
| I:401-I:404  | 47.08 | 49.55 | 36.80 | 10.29 | 0.00 | 0.00 |
| I:501-I:504  | 47.08 | 49.55 | 36.80 | 10.29 | 0.00 | 0.00 |



#### Annual Water Balance (Source: Appendix C DSLLC(2016)

| Year    | ∆Volume | Rainfall | Runoff | ET     | Overflow | Seepage |
|---------|---------|----------|--------|--------|----------|---------|
| 2004    | 5,600   | 26,700   | 8,590  | 24,300 | 0        | 5,390   |
| 2005    | 8,000   | 27,800   | 9,010  | 24,500 | 0        | 4,310   |
| 2006    | -18,000 | 12,800   | 1,960  | 25,700 | 0        | 7,060   |
| 2007    | -2,900  | 22,000   | 6,270  | 23,600 | 0        | 7,570   |
| 2008    | 200     | 21,600   | 8,190  | 23,400 | 0        | 6,190   |
| 2009    | 300     | 23,600   | 6,820  | 24,000 | 0        | 6,120   |
| 2010    | -2,300  | 21,300   | 6,780  | 24,400 | 0        | 5,980   |
| 2011    | -7,200  | 20,200   | 4,680  | 24,500 | 0        | 7,580   |
| 2012    | 0       | 22,400   | 7,090  | 23,200 | 0        | 6,290   |
| 2013    | -4,700  | 17,900   | 4,360  | 22,400 | 0        | 4,560   |
| 2014    | 15,000  | 29,900   | 11,100 | 22,800 | 0        | 3,200   |
| Average | -545    | 22,382   | 6,805  | 23,891 | 0        | 5,841   |


Note: Unit is acre-feet; sign – means that lake loses water.


Lake Weir Annual Water Balance (Source: Appendix C, Table 7, DSLLC(2016))



### Basin 5: SURO Totals

- Basin 5 impervious runoff extremely high
- Basin 5 pervious runoff almost exceeds runoff from all the other pervious basins
- Basin 5 runoff is not routed
  - Recommend adjusting parameters to prevent runoff
     OR
     Route runoff to aquifer





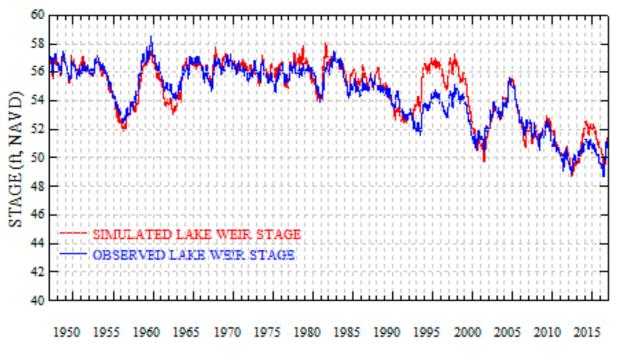


#### Basin Discharges in cfs

- Basin 5 discharges are quite large
- Tributary basins are much smaller and therefore contribute less basin runoff
- Tributary flows from basin 2, 3, and 4 provide significant inflow to the lake
- Surrogate Palatlakaha River:
  - 221 square miles
  - Peak flows on the order of 700 cfs
  - In comparison basin 5 is about 13 square miles

| Basin   | Maximum<br>PERLND<br>PERO | Maximum<br>PERLND<br>SURO | Maximum total<br>outflow (PERO<br>+ IMPLND<br>SURO) |
|---------|---------------------------|---------------------------|-----------------------------------------------------|
| Basin 1 | 182                       | 134                       | 268                                                 |
| Basin 2 | 18                        | 16                        | 24                                                  |
| Basin 3 | 22                        | 17                        | 45                                                  |
| Basin 4 | 63                        | 52                        | 78                                                  |
| Basin 5 | 243                       | 192                       | 619                                                 |




## **Long-term Simulation Review**

1976-2008



#### Long Term Simulation Results

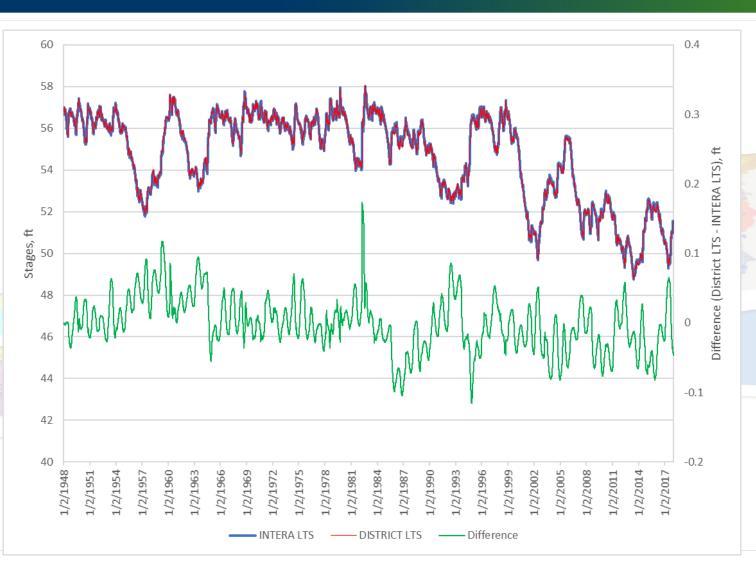
- Overall, the long term simulation replicated the observed data very well
- All data was prepared following standard practices; the tech memo documentation could be expanded to better describe procedures used
- One discrepancy period was noted from 1994-1999, rainfall was noted as a possible cause; further investigation and sensitivity analysis may be warranted



Date



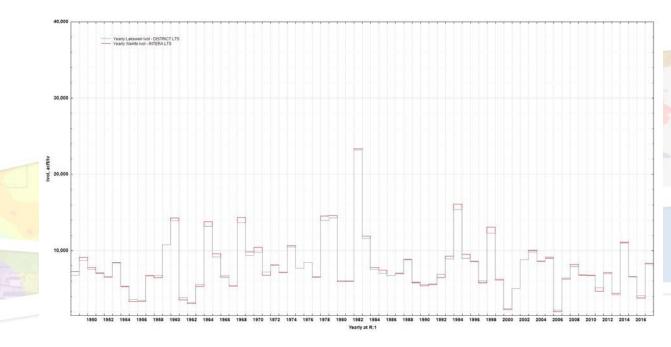
#### Long-term Simulation VS. Calibrated model Input


- Comparison of District provided LTS model and calibrated model demonstrated some discrepancies in the input data:
  - VLE
  - MON-LZETPARM
  - INFILT
  - DEEPFR
  - LZETP
  - UZS
  - LZS modeled estimates
  - Special Actions GENER 2
- The long term simulation should have identical basin parameters as found in the calibration data set



#### Long-term Simulation Comparison

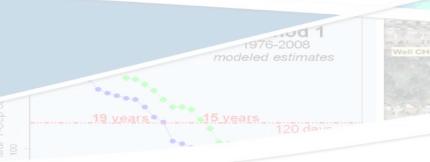
 Changed the calibrated model UCI: Dates, external sources block, and initial conditions to match the District provided longterm simulation model (named it INTERA LTS) to document changes


| Difference (District       | LTS- INTERA LTS) | 221 |
|----------------------------|------------------|-----|
| Average                    | -0.00057         |     |
| Max                        | 0.174            |     |
| <br>Min                    | -0.116           |     |
| LTS – Long-term Simulation |                  |     |





#### Lake Inflow Comparison


- To further determine effects of parameter changes between calibration and LTS; lake inflows were compared
- Adjusted basin parameters had little impact on overall basin response





# Conclusion

Revised WPA-2





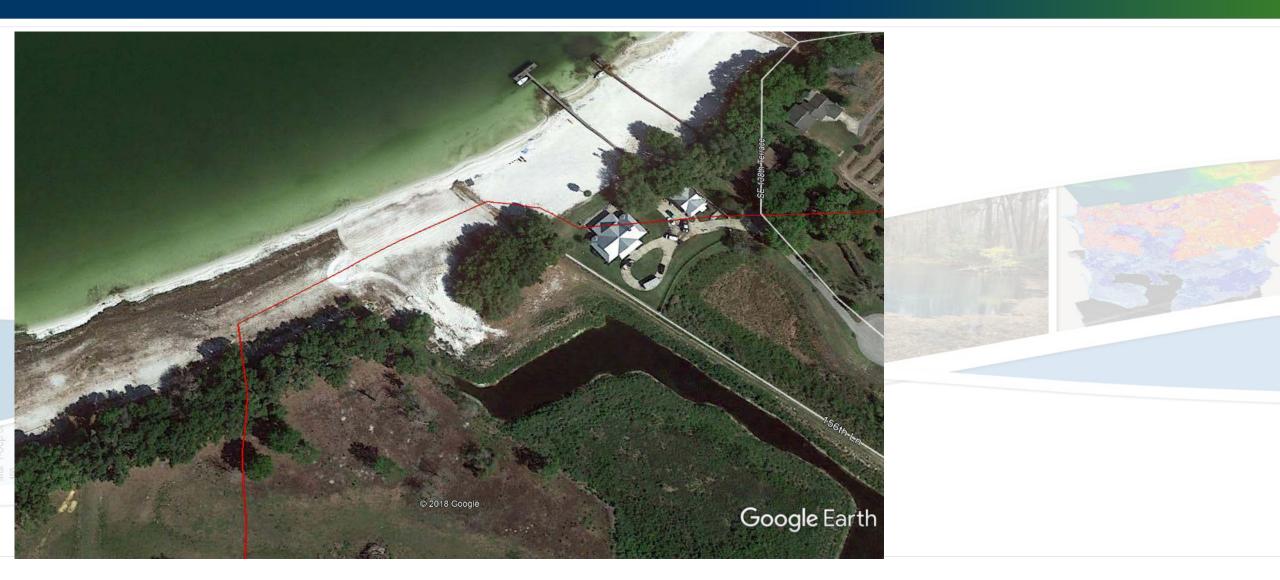
#### Conclusion

- Model calibration agrees well with observed data
- Basin 5 water balance should be appropriate and represent a closed basin
- Runoff from basin 2, 3, and 4 seem high and difficult to support given aerial reconnaissance of inflow locations
- PET seems low for wetland and high for pasture and forest
- Sensitivity analysis is desired to evaluate impacts of basin inflows and lake leakage
- LTS looks reasonable and adequate for evaluating impacts to lake levels



#### Basin 2






#### Basin 3





#### Basin 4



