

Agenda

- Introductions and meeting objectives
- Overview of Sylvan Lake MFLs
- Overview of HSPF model
- Stakeholder comments
- Meeting adjourn

St. Johns River Water Management District

Statutory Directive

Water management districts must establish MFLs that set...

"...the <u>limit</u> at which further withdrawals would be significantly harmful to the water resources or the ecology of the area."

Section 373.042(1), Florida Statutes (F.S.)

Statutory Directive

"...consideration shall be given to... non-consumptive uses, and environmental values..." 62-40.473, F.A.C.

- Recreation in and on the water
- Fish & wildlife habitats and the passage of fish
- Estuarine resources
- Transfer of detrital material
- Maintenance of freshwater storage & supply
- Aesthetic and scenic attributes
- Filtration / absorption of nutrients & pollutants
- Sediment loads
- Water quality
- Navigation

MFL Process Overview

MFLs Determination:

 Determine the most critical environmental features to protect and the minimum hydrologic regime required for their protection (MFLs condition)

MFLs Assessment:

- Determine the current impacted hydrologic regime (current-pumping condition)
 - Requires determination of no-pumping hydrologic regime, which represents historical no-pumping condition
- Compare the MFLs and current-pumping conditions to determine if water is available (freeboard)

Hydrological Analysis

Use of HSPF Model for MFLs

- Simulation of interaction between the lake and the UFA
- Simulation of long-term lake levels
- Evaluation of the effect of pumping on critical lake levels needed for WRVs
- Assessment of the current status of MFLs to estimate water availability or deficit

Potential Model Simulations

- Long-term simulations
- Scenarios (by adjusting UFA boundary condition)
 - No-pumping condition simulations
 - Current-pumping condition simulations

Peer Reviewer

 Sylvan Lake - Silong Lu, PhD, PE, DWRE (Dynamic Solutions, LLC)

Contents

- Background on Sylvan Lake
- Hydrological Model (HSPF) development and calibration
- Long-term simulation

Sylvan Lake MFL

- Model development by CDM Smith
 - Review data provided by SJRWMD
 - Develop updated Sylvan Lake HSPF
 - Calibrate and validate model
- Outflow Structure

St. Johns River Water Management District

Drainage Basin

Land Use

Gages

Rainfall and PET

ANNUAL RAINFALL AT SANFORD (1948-2007) AND USGS (2008-2017) STATION

ANNUAL PET AT SANFORD STATION

St. Johns River Water Management District

Groundwater

Groundwater

STATION NUMBER	STATION NAME	Data Start	Data End
30342858	S-0718 Sylvan Lk Wells at Sanford (WL) FA	2/11/2009	7/30/2017
09272094	OR0047 Obs Well at Orlo Vista (WL) FA	1/1/1997	3/16/2017

Synthesized values based on well OR-0047 were used to fill the data gap at well S-0718 prior to July 2009 in the calibration, verification and long-term models using MOVE.3

Relationship for the Synthesized S-0718 Sylvan data: ELEV (ft, NAVD88)= 1.633 x (OR-0047 ELEV) 0.7521

Hydrological Model Setup

Outflow Structure

- HSPF
- 4 sub-basins
- Outflow structure
 - Modified in 2014

Hydrologic Model Calibration

- Calibration Period
 - **1/1/2008- 12/31/2016**
- Validation Period
 - **1/1/1997-12/31/2007**

Calibration Results

Calibration Results

Validation Results

Validation Results

Hydrologic Model Performance

Statistic	Paired Data within ½ Foot	Nash-Sutcliffe Efficiency
Calibration	72%	0.93
Validation	57%	0.90

Water Balance

LAKE INFLOWS	Average Annual Volume (acre-feet)	Average Annual Value (inches over lake surface)	Percent of Inflows
Direct Rainfall	734	48.9	63%
Pervious Inflow – Direct Tributary Area	225	15.0	19%
Impervious Inflow – Direct Tributary Area	130	8.7	11%
Baseflow Inflow – Indirect Tributary Area	74	4.9	6%
TOTAL	1,163	77.5	100%
LAKE OUTFLOWS	Average Annual Volume (acre-feet)	Average Annual Value (inches over lake surface)	Percent of Outflows
Evaporation	773	51.5	66%
Lake Seepage to Floridan Aquifer	399	26.6	34%
Lake Surface Discharge	0	0.0	0%
TOTAL	1,172	78.1	100%

Long-term Simulation

- Calibrated model was run from January 1, 1948 to December 31, 2016.
 - Extensions of hourly rainfall, PET, and daily UFA groundwater levels
 - All the hydrologic parameters were kept the same.
 - Modified outflow structure was used

Sylvan Discharge

ELEV (ft NAVD88)	Area (acres)	Volume (acre-feet)	Pre-2014 Culvert Outflow (cfs)	Post-2014 Culvert Outflow (cfs)
36.6	162	1024	0	0
38.6	180	1365	0	0
40.5	236	1762	0	0
40.8	256	1838	0	1.8
41.0	270	1888	0.1	7.4
41.5	307	2032	1.5	20.8
42.0	345	2158	4.9	38.5
42.5	358	2371	21	47.2
43.0	371	2553	42	54.5

Long-term Results

Thank you

