Crystal Lake MFLs

HSPF Model Peer Review Kick-off Meeting

12/13/2023

Agenda

- Overview of Crystal Lake and MFLs process
- Overview of HSPF model
 development
- Comments / Questions
- Site visit

West Crystal Lake

CRYSTAL LAKE

- Located in Seminole County, in cities of Lake Mary and Sanford; highly urbanized basin
- Two major lakes, West Crystal Lake (~140 acres), and East Crystal Lake (~120 acres)
- Chain flows north to Lake Monroe
- Both East and West Crystal have locally important public parks.
- Chain of lakes provide important recreational opportunities; and important habitat for wading birds, fish, and wildlife.

STATUTORY DIRECTIVE

Water management districts must establish MFLs that set...

"...the limit at which further <u>withdrawals</u> would be significantly harmful to the water resources or the ecology of the area."

Section 373.042(1), Florida Statutes (F.S.)

STATUTORY DIRECTIVE

"...consideration shall be given to... non-consumptive uses, and environmental values..." 62-40.473, F.A.C.

- Recreation in and on the water
- Fish & wildlife habitats and the passage of fish
- Estuarine resources
- Transfer of detrital material
- Maintenance of freshwater storage & supply
- Aesthetic and scenic attributes
- Filtration / absorption of nutrients & pollutants
- Sediment loads
- Water quality
- Navigation

MFLs Process - Overview

MFLs Determination:

• Determine the most critical environmental features to protect and the minimum hydrologic regime required for their protection (MFLs condition)

MFLs Assessment:

- Determine the current impacted hydrologic regime (currentpumping condition)
- Compare the MFLs and current-pumping conditions to determine if water is available (freeboard)

MFLS ASSESSMENT

amount available for withdrawal (sustainable yield)

Current-pumping condition

Flow or Level

Time

HYDROLOGICAL ANALYSES

Use of HSPF Model for MFLs

- Simulation of interaction between the lake and the UFA
- Evaluation of the effect of pumping on critical lake levels needed for water resource values (fish and wildlife habitat, recreation, water quality, etc)
- Assessment of the current status of MFLs to estimate water availability or deficit

Model Simulations

- Long-term simulations (1953-2019)
- Scenarios (by adjusting UFA boundary condition)
 - No-pumping condition simulations
 - Current-pumping condition simulations

Peer Reviewer

• Silong Lu, PhD, PE (Dynamic Solutions)

Crystal Chain of Lakes

Hydrologic Modeling

Olkeba T. Leta, Ph.D.

Bureau of Watershed Management & Modeling

Outline

- Background
- Hydrological System Program FORTRAN (HSPF) Model:
 - GIS and hydro-meteorological data
 - Set-up
 - Calibration and validation
- Sensitivity analysis
- Long-term simulation

HSPF Model

Soil-plant-atmosphere interaction processes

Crystal Chain of Lakes

- Located in Seminole county
- •7 major lakes
- Presence of backwater effects during high levels

DEM and Bathymetry

- DEM: SJRWMD
- Bathymetry:
 - o SJRWMD (West Crystal, 2023)
 - Environmental Research and Design (ERD, 2014) stage-areavolume data for:
 - ✓ East Crystal
 - ✓ Bel-Air
 - ✓ Amory
 - ✓ Deforest
 - o ICPR model (CDM, 2002)
 - ✓ Stage-area-volume data
 - ✓ Flow data

Land Use/Land Cover

Hydro-meteorological Stations

- Rainfall/Potential Evapotranspiration
 - NOAA Sanford station
- UFA levels
 - S-0975 and S-0125
- Observed lake levels
 - SJRWMD and Seminole County

Annual Rainfall and PET at Sanford

Observed Lake Levels

 Available since 1993 for both Lakes

St. Johns River

Water Management District EAST AND WEST CRYSTAL LAKES OBSERVED LEVELS

Groundwater Levels

HSPF Model Set-up

• SJRWMD's watershed modified:

CDM's watershed boundary
Based on field visit (6/10/2021)

• Watershed delineation:

- Limited to Deforest Lake outlet
- o 13 sub-watersheds

• Backwater effects:

Sub-merged rectangular weir equations
Rating curves estimated by ICPR4
Special action module of HSPF

Model Calibration and Validation

Calibration

- 1/1/2007 to 12/31/2019
- Manually calibrated the model
- Evaluated model performance using graphical and statistical metrics
- Validation
 - 1/1/1995 to 12/31/2006
 - Evaluated model performance using graphical and statistical metrics

West Crystal Calibration and Validation

East Crystal Calibration and Validation

Model Performance

Period	Statistics	Description	Target	West Crystal	East Crystal
	NSE	Nash-Sutcliffe Efficiency	≥ 0.80	0.14	0.73
	RMSE	Root Mean Squared Error	$\leq 1 \text{ ft}$	1.51	0.82
Calibration (2007-2019)	ME	Mean Error	$\leq \pm 1 $ ft	-0.61	0.17
	±1ft (%)	% of observations bracketed within ± 1 foot	≥85	29.93	81.01
	NSE	Nash-Sutcliffe Efficiency	≥ 0.70	0.82	0.76
	RMSE	Root Mean Squared Error	$\leq 1 \text{ ft}$	1.26	1.14
Validation (1995-2006)	ME	Mean Error	$\leq \pm 1 $ ft	0.57	-0.06
	±1ft (%)	% of observations bracketed within ± 1 foot	≥75	51.18	58.96

Watershed Annual Water Balance

- Annual average values over the calibration/validation period (inches/year)
- Actual Evapotranspiration dominates the water balance components, followed by surface runoff from residential/commercial areas

Period	Description	LDR	MDR	HDR	CI	OPN	PAS	AGR	RNG/SHB	FRS	WTL	Watershed
Calibration	Rainfall	52.8	52.8	52.8	52.8	52.8	52.8	52.8	52.8	52.8	52.8	52.8
	Deep recharge	5.9	6.1	5.8	6.1	10.2	6.6	6.4	6.3	4.8	7.0	5.3
	Evapotranspiration	35.0	32.5	27.5	23.8	26.4	37.2	39.0	37.7	41.2	42.9	34.0
	Runoff	12.2	15.1	21.4	25.9	16.2	8.9	7.2	8.7	6.6	2.6	13.4
	Baseflow	6.7	6.5	6.8	6.5	10.6	6.5	5.6	6.4	5.7	2.5	4.7
	Rainfall	53.9	53.9	53.9	53.9	53.9	53.9	53.9	53.9	53.9	53.9	53.9
Validation	Deep recharge	6.4	6.6	6.3	6.6	10.4	7.3	7.4	7.1	5.9	7.0	5.7
	Evapotranspiration	34.3	31.9	27.1	23.5	26.5	36.5	38.2	36.9	40.3	43.4	33.6
	Runoff	13.7	16.5	22.8	27.2	17.1	10.3	8.6	10.1	8.1	4.6	14.9
	Baseflow	7.4	7.1	7.4	7.2	10.9	7.4	6.7	7.3	7.2	4.5	5.6

Lake Annual Water Balance

- Annual average over the calibration/validation period (ac-ft/year)
- Seepage from lakes dominates the outflow components, followed by evaporation process
- Strong connection between the lake and UFA systems

Lake	Period	Direct Rainfall	Watershed Inflow	Evaporation	Seepage	Surface Outflow	Total Inflow	Total Outflow	Storage Change
West Crustel	Calibration	486.3	741.6	463.3	531.3	218.9	1227.9	1213.4	14.5
	Percent	39.6	60.4	37.7	43.3	17.8			1.2
west Crystar	Validation	662.1	2303.4	613.3	854.3	1579.8	2965.4	3047.4	-82.0
	Percent	22.3	77.7	20.7	28.8	53.3			-2.8
East Crystal	Calibration	428.9	800.5	402.9	576.3	227.3	1229.4	1206.5	22.9
	Percent	34.9	65.1	32.8	46.9	18.5			1.9
	Validation	549.1	1301.6	493.9	730.1	679.6	1850.7	1903.6	-52.9
	Percent	29.7	70.3	26.7	39.5	36.7			-2.9

Parameter Sensitivity Analysis

Parameter	Description	Calibrated value	Change
DEEDED	Fraction of groundwater	Variad with sub watershad	Decreased by 10% or 20%
DEEFFK	inflow to deep aquifer	valled with sub-watershed	Increased by 10% or 20%
	Soil infiltration	Variad with LULC two	Decreased by 10% or 20%
INFILI	capacity index	valled with LULC type	Decreased by 10% or 20%
LZSN	Lower zone nominal	Variad with LULC two	Decreased by 10% or 20%
	storage	valled with LULC type	Increased by 10% or 20%
LZETP	Lower zone	Variad with LULC two	Decreased by 10% or 20%
	Evapotranspiration	valled with LULC type	Increased by 10% or 20%
k	Lashanaa	Variad with DCUDES	Divided by 2 or 3
			Multiplied by 2 or 3

Sensitivity Analysis Results

St. Johns River Water Management District

- Leakance showed more impacts on low to medium stages
- Leakance (k) most sensitive
- DEEPFR and LZETP moderately sensitive
- INFILT and LZSN not sensitive

Long-term Simulation

- Extended the calibrated and validated to 1/1/1953 to 12/31/2019
 - Hourly rainfall data (used Sanford station)
 - Hourly PET (used Sanford station)
 - Daily UFA groundwater levels
- All hydrologic parameters were kept the same

West Crystal Long-term Simulation Results

East Crystal Long-term Simulation Results

Conclusions

- The HSPF model simulated daily variations and magnitudes of lake levels for calibration, validation, and long-term periods reasonably well
- Simulated watershed and lake water balances are good
- The lakes are significantly connected with UFA system
- The model can be used to simulate groundwater-surface water interactions and minimum levels analysis

NEXT STEPS

- Reviewer to discuss initial findings (teleconference)
- Draft model review TM
- Reviewer to discuss final comments (teleconference)
- Final TM
- Draft MFLs Report
- Rulemaking

January 31, 2024

January 10, 2024

February 7, 2024

February 16, 2024 End of 2024 End of 2025

For more information on the Crystal Lake HSFP model and MFLs development go to:

https://www.sjrwmd.com/minimumflowsandlevels/crystal-lake/

...or email Andrew Sutherland at:

asutherl@sjrwmd.com

