Improvement	Objective	Approach	Benefit Of Improvement	Additional Stakeholder Comments (March 2017)	
Update river and drain package	Increase model stability; minimize unrealistically high flux exchanges among boundary conditions; improve simulated flux distribution along rivers	cell; implement a different river and drain conductance adjustment approach; Check isolated Drain Package features	Aims to minimize the unrealistically high flux exchanges among boundary conditions (which was one of the major concerns of technical team). Increases model stability, decreases run time, eliminates conflicting boundary conditions within same cell	Since RIV, DRN & GHB boundary conditions (BCs) form the basis for baseflow calculation in MODFLOW, the Technical Team provided several comments and figures illustrating issues such as: inconsistent bottom elevations, overlapping/conflicting BCs, inconsistent layer assignment, uncharacteristically high conductance values, and stages not consistent with the river flow direction. We think that it is important that these issues be satisfactorily resolved.	Aggregation of mul each cell has been input files were con be at most one Rive occur at stream-lak the St. Johns River) Additional checking this process. Additional Drain Pa not delineated in N Computer program Drain Package fluxe
Update and recalibrate HSPF models	Improve HSPF simulations in critical areas; increase confidence in overall simulated water budget for critical subwatersheds; Improve recharge and maximum saturated ET estimates; reduce uncertainty in recharge	subwatersheds; align conceptualization of HSPF with	Increase confidence in recharge estimates by incorporating comments expressed during Tech Team review, specifically inconsistencies between adjacent HSPF models/basins	A number of concerns with the HSPF calibration and modeling process were expressed in stakeholder comments. These issues included changes to 1) eliminate tendency toward underprediction of flows for 2009, 2) address calibration of basins with no observed data, 3) address simulation of springflows in HSPF, 4) address simulation of closed basins, and 5) review the effect of using a constant land use for all model simulations.	Recalibrated all HS evaporation estima history match. Added two flow sta Added Silver Spring Springs as modeled represented by usi This new approach calibration for som between models ca surface hydrology a
Improve simulated SAS water levels	Increase confidence in model's ability to assess impacts on wetlands and potential indirect recharge projects	are unrealistically high or low; Develop synthetic SAS targets based on water levels estimated	Correct obvious deficiencies where groundwater levels were simulated much lower (or higher) than physically possible or would be inferred by review of soils/USGS quad maps, etc. Correcting these will inherently increase stakeholder confidence in the model's ability to assess wetland/surficial aquifer impacts		Additional SAS hea elevations in wetla history match for s targets and the new improved simulatio the history match i
Reassess the use of MNW2 package for modeling multi- aquifer wells	Increase model stability	Remove MNW2 wells with zero flows; review simulated fluxes from MNW2 package; develop an alternative approach to simulate multi-aquifer wells if necessary	Decreased run time, initial review/testing appears to indicate the wells asspecified are satisfactory		Removal of MNW2 testing to date indi

Status June 2017 (004b)

nultiple River Package and Drain Package features within en completed. The updated River and Drain Package constructed so that (for most model grid cells) there will River and one Drain Package feature per cell (exceptions lake confluences and at the mouths of tributaries along er).

ing of river and drain stages was performed as part of

Package features are being added to represent drainage NHDPlus flowline dataset in selected areas (ongoing). ams have been created to generate maps of River and uxes on a cell-by-cell basis.

HSPF models increasing the importance of literature mates and total volumes which generally improved the

stations for the history match on the Suwannee River. ings, Rainbow Springs, St. Marks Rise, and Wakulla led systems within HSPF, where previously they were using flow observations.

ch for modeling spring systems allows a better ome closed basins. Noticeable differences in recharge s can usually be explained as expected differences in gy and land cover.

ead targets have been estimated using land surface tland areas, and subsequently incorporated into the r stress period 2 (calendar-year 2009). These new new delineations of Drain Package features have ation of SAS water levels, but evaluation of this aspect of h is ongoing.

V2 wells with zero flows has been completed and ndicates that the wells as specified are satisfactory.

Improvement	Objective	Approach	Benefit Of Improvement	Additional Stakeholder Comments (March 2017)	
Improve simulated spring flows	selected springs; add capability of simulating a priority spring that was not included in the original model; improve	Add Crescent Springs and Rock Sink Springs (missing priority spring); Improve poor fit to the selected spring flows(absolute residual > XX% of estimated flow); review and update (as necessary) target spring flows and/or pool elevations	Increased confidence in model's predictions in spring flows.	The proposed changes should improve the calibration of springflows. However, due to the future use of the model for springs MFLs, a verficiation simulation is critical for assessing the suitability of the NFSEG. An additional consideration given the importance of springflows is whether or not the modeling of a constant "spring pool" stage in GHB BCs for historic conditions and predictive simulations is appropriate.	Crescent Springs an Spring pool elevatio features. Springflow targets h reflect more recent Review of spring fea
Improve baseflow simulations in the groundwater model in critical areas	Improve accuracy of predictions of flow changes at critical stream gages	baseflow estimates at selected stream gages and river reaches;	Increased confidence in model and predictions, particularly with respect to flowing systems and application of model to their assessment.	One of the key concerns identified by the Technical Team was the accuracy achieved by MODFLOW in its baseflow estimates. There were also concerns about the limited number of baseflow calibration targets utilized. These concerns should be addressed prior to MFL use of the NFSEG. In addition, validating MODFLOW baseflow estimates is one reason that a verification simulation is critical for assessing the suitability of hte NFSEG.	Evaluation of basefl
Improve point-source recharge distribution	Improve recharge estimates; better simulate natural recharge in closed basins	Review and reassign injection wells representing natural point- source recharge to the appropriate aquifer if needed; update layer 3 well package injections in closed basins as necessary; convert some of point- source recharge to areal recharge	Eliminate potential concern of direct injection to UFA in closed basins where there may not be a clear distinction this transfer is happening via an active sink/swallet (like Alachua Sink)	If a new process is implemented that would convert point recharge to basin-wide areal recharge, then the new recharge estimates would need to be made consistent with HSPF. Also, as noted above, the accuracy of closed basin results in HSPF was noted as a concern.	Identification of inje layer 1 is complete. Reprocessing of HSI
Improve aquifer parameter estimates in the model	reduce uncertainty in model predictions	bounds in PEST and adjust these bounds (or make other adjustments) if justifiable by	Addresses tech team comments that certain areas in UFA are hitting theirbounds and the appropriateness of bounds we have set. Increases confidence in simulating pumps- off scenario	In addition, the Technical Team provided comments that regardless of the hydrogeologic values selected by PEST at an individual point, the bounds should be regionally consistent and not allow PEST to select results that vary dramatically unless hydrogeologically justified by the data. A lack of data should not cause these types of changes as noted in comments.	

Status June 2017 (004b)

s and Rock Sink Springs to be added in next model run. vations have been updated at a limited number of

ets have been updated at a limited number of springs to cent data collection.

features is ongoing.

aseflow estimates and simulation results is ongoing.

f injection wells to be reassigned as diffuse recharge to ete. ⁻ HSPF outputs is in process.

bounds has been completed and bounds have been be areas to reflect uncertainty in parameter values, but onable parameter limits.

rices have been reintroduced to the PEST history match esent spatial correlation in parameter values, and otential for unwarranted heterogeneity in estimated

Improvement	Objective	Approach	Benefit Of Improvement	Additional Stakeholder Comments (March 2017)	
Null Space Monte Carlo	Quantify Model/Predictive	DD, FG, TG work with	Uncertainty analyses were conducted for	The Districts performed a predictive uncertainty analysis.	Preliminary discuss
Uncertainty Analysis	Uncertainty	Watermark/John Doherty to set	Version 1.0. Based on verbal comments	However, it is essential that the Peer Reviewers	has begun to aid in
		up process and implement	made during tech team meetings, it is	determine if the scope of the predictive uncertainty	PEST history match
			anticipated that a similar and/or more	analysis actually addresses the potential uncertainty	
			comprehensive evaluation will be required	associated with the NFSEG Model. Given the importance	
			for NFSEG v1.1	of rainfall in the water budget, it appears that the effect	
				of HSPF's recharge estimates being in error in portions of	
				model should be evaluated as a source of error.	

Status June 2017 (004b)

cussion of parameter and predictive uncertainty analysis d in planning for the analysis that will occur once the htch/calibration for NFSEG v1.1 has been completed.